emw.normP	sqrt(realdot(emw.Px,emw.Px)+realdot(emw.Py,emw.Py)+realdot(emw.Pz,emw.Pz))	C/m²
emw.Dx	epsilon0_const*emw.Ex+emw.Px	C/m²
emw.Dy	epsilon0_const*emw.Ey+emw.Py	C/m²
emw.Dz	epsilon0_const*emw.Ez+emw.Pz	C/m²
What i expect when i enter Polative permittivity (ensilonr) is:		
What i expect, who	en i enter Relative permittivity (epsilonr), is :	

epsilon0_const*(emw.epsilonrxx*emw.Ex+emw.epsilonrxy*emw.Ey+emw.epsilonrxz*emw.Ez-emw.Ex)

epsilon0_const*(emw.epsilonryx*emw.Ex+emw.epsilonryy*emw.Ey+emw.epsilonryz*emw.Ez-emw.Ey)

epsilon0_const*(emw.epsilonrzx*emw.Ex+emw.epsilonrzy*emw.Ey+emw.epsilonrzz*emw.Ez-emw.Ez)

 $\varepsilon = \varepsilon_r \varepsilon_0 = (1 + \chi) \varepsilon_0$

emw.Px

emw.Py

emw.Pz

instance, for air as 0 instead of 1 then?

Dx= epsilon0_const*(Ex+epsilonr_xj*Ej)

permittivity acts as susceptibility, am I wrong? Should I enter Relative permittivity, for

C/m²

C/m²

C/m²