$$a_0(p,q) - \int\limits_{\Gamma_{\rm I}} \left\{ \frac{\partial p}{\partial n} \right\} \left(\llbracket q \rrbracket + \alpha \left\{ \frac{\partial q}{\partial n} \right\} \right) + \int\limits_{\Gamma_{\rm I}} \beta \left(\llbracket p \rrbracket + \alpha \left\{ \frac{\partial p}{\partial n} \right\} \right) \left(\llbracket q \rrbracket + \alpha \left\{ \frac{\partial q}{\partial n} \right\} \right) = \ell(q), \tag{1}$$

where $[\![p]\!]$ and $\{\partial q/\partial n\}$ are acoustic pressure jump and average normal acoustic flux, respectively, α and β are complex constants with

$$a_0(p,q) = \int_{\Omega_0} \nabla p \cdot \nabla q - \kappa^2 \int_{\Omega_0} pq + i\kappa \int_{\Gamma_{io}} pq.$$
 (2)

where $\Omega_0 \subset \mathbb{R}^2$ is a union of different open disjoint subdomain, Γ_{io} is inlet-outlet boundary, and Γ_I a union of interface boundaries.