We assume that the solid phase of the vocal fold tissue is intrinsically incompressible, porous, and elastic, and that the liquid phase is intrinsically incompressible. The volume content 
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= s, f which denote the solid and liquid phases) for each phase can be described as (Mow et al., 1980; Holmes, 1986), 
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where 
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 are the volume contents of the solid and fluid, respectively. 
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 is the total volume. Thus, these two biphasic content parameters satisfy 
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= 1. We can then describe their continuity and momentum equations as,
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where 
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 is the velocity of the phase 
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 is the mass density in the mixture, 
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is the Cauchy stress, and 
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 is the diffusive momentum exchange. The momentum balance for mixtures leads to 
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. The volume content of the solid, 
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, is a constant. According to Darcy’s law, the momentum exchange is obtained as 
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, where k is the hydraulic permeability of the solid phase. 
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=1 are for single phase solid. 
For the solid and fluid phases, we have the following constitutive relationship (Mow et al., 1980),
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where p is the interstitial fluid pressure. I is the unit diagonal matrix. 
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 are the viscosity coefficients of the fluid phase. 
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 can be represented by a relaxation function, G(t), as 
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where 
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 are the elastic constants of the solid phase. 
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 is the solid displacement. 
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 is the infinitesimal strain tensor of the solid phase. By numerically solving Eqs. (1) to (6), we can obtain the numerical solution of the three-dimensional biphasic model. 
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