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Abstract: Viscous fingering is a topic of interest 
since the beginning of computational fluid 
dynamics. Here we focus on the classical 
constellation of miscible displacement, as it has 
been investigated in Hele-Shaw cells. A 
temperature or salinity front is entering with a 
fluid that has a different viscosity. The pure 1D 
flow is destabilized by the Saffman-Taylor 
instability. Using COMSOL Multiphysics we 
investigate the solution of a 2D generic set-up in 
an Eulerian system. Initial conditions near the 
inlet are described by a random function. We 
explore the fingering solutions in terms of 
various numerical parameters, i.e. for meshes of 
various type and refinement. For various solvers 
we examine the execution time, i.e. the 
performance of the model. 
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1. Introduction 
 
Fingering phenomena can observed in several 
fields of application, especially in porous media 
flow. It is relevant in oil and gas reservoirs, esp. 
for water oil displacement [i]. It is also relevant 
concerning CO2 sequestration into deep aquifers 
(Garcia & Pruess [ii]). Fingering is observed at 
contaminated groundwater sites, where non-
aqueous phase liquids penetrate the aquifer 
(Zhang & Smith [iii]). Perugini et al. [iv] find 
evidence for viscous fingering in magmatic 
structures of Antarctica. Zitha et al. [v] study 
viscous fingering in a foam drainage problem.   

Here we focus on the classical constellation 
of miscible displacement, as it has been 
investigated in Hele-Shaw cells, i.e. laboratory 
set-ups for 2D flow of a highly viscous fluid. 
Under usual conditions the analytical description 
is the same for Hele-Shaw cells and porous 
media flow. In the test-case a temperature or 
salinity front is entering with a fluid which is 
characterized by a drastically changing viscosity. 
The system is destabilized by the Saffman-
Taylor instability [vi]. 
 

2. Governing Equations 
 
As Zimmerman & Homsy [vii] we start with the 
system: 
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which is valid in the Eulerian coordinate system. 
The first equation expresses the conservation of 
fluid mass in terms of the velocity vector u. It is 
valid for incompressible fluids. In porous media 
flow u denotes the Darcy-velocity. The second 
equation is Darcy's Law for porous media flow, 
where k denotes the permeability tensor, μ 
kinematic viscosity and p dynamic pressure. 
Note here already that viscosity is a variable. For 
free fluids in Hele-Shaw cells the given 
description holds, if the permeability is set to 

, where d denotes the space between 
the two plates of the cell. The third equation is 
the transport equation, describing the distribution 
of a component in space and time. The 
independent variable is the concentration c. ϕ 
denotes the porosity, which has to be set to unity 
for flow in Hele-Shaw cells. D is the dispersion 
tensor, which in 2D is given by: 
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where αL denotes the dispersivity in longitudinal 
direction and αT the dispersivity in transversal 
direction. ux and uy are the components of the 
velocity vector u. Molecular diffusivity is not 
used in this model. The dispersion tensor can be 
derived by double application of the rotation 
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Homsy [vii], Coutinho & Alves [viii], Petitjeans 
et al. [ix]): 
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The system of equations (1) and (2) is mostly 
simplified to a system of two differential 
equations. This can be achieved in several 
manners. One way is to replace u in the first 
equation of  (1) by the explicit formulation of the 
second equation: 
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With equation (5) an elliptic equation for 
dynamic pressure p as independent variable 
results. Alternatively the streamfunction Ψ can 
be introduced, which is defined by the equations: 

                     yu
x y

∂Ψ ∂Ψ
= =

∂ ∂ xu−  (6) 

For the streamfunction an elliptical differential 
equation results, too: 
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which can be verified easily by using equations 
(1) and (5), utilizing that the partial derivatives in 
x and y direction for p can be exchanged.  
In this model viscosity is concentration 
dependent. It decreases exponentially with 
concentration c. Following Coutinho & Alves 
[viii] we assume isotropy of the scalar 
permeability k and the ratio μ/k fulfilling the 
equation 

 / exp( )k Rcμ = −  (8) 

where R is connected with the mobility ratio M 
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by the equation 
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μ1 is the viscosity of the replacing fluid, and μ2 
the viscosity of the replaced fluid. 
In some publications another formulation of the 
partial differential for the streamfunction Ψ is 
used. In analogy to Zimmerman & Homsy [vii] 
using the Langrangian formulation, Chen & 
Wang [x] denote the streamfunction equation as: 

 2 R∇ Ψ = − ∇Ψ ∇i  (11) 

Equation (11) is equivalent to equation (7), but is 
more complex and more difficult to solve. For 
that reason in our numerical simulations we 
prefer the formulation given before. 
There is another instance in which the presented 
model differs from those presented by the 
authors cited above. Zimmerman & Homsy [vii], 
and Ghesmat & Azaiez [xi] transfer the problem 
to a moving coordinate system. For the 
Lagrangian system they obtain a modified 
differential equation and also different boundary 
conditions. Similar transformations are utilized 
by de Wit et al. [xii], and Mishra et al. [xiii]. 
Coutinho & Alves [viii] report about numerical 
modelling in the Eulerian system, which we also 
use in this paper. In contrast to the latter authors, 
who use the pressure formulation, we prefer the  
streamfunction for the flow equation. We like 
streamlines to be obtained directly as contour 
lines for Ψ. Another difference concerns the 
boundary conditions: the model region of 
Coutinho & Alves [viii] is closed and they use 
sink and source terms to simulate the flow 
regime.  
 
3. Model Region, Boundary Conditions 
and Parameters
 
The model region is a strip of 500 m length (x-
direction) and 125 m width (y-direction). A less 
viscous fluid is entering on the left, and flowing 
between two impermeable horizontal boundaries 
towards the outlet, gradually replacing the highly 
viscous fluid that is present initially. 
The situation is realized by implementing 
boundary conditions as follows. There is inflow 
at x=0 boundary with the Neumann condition 

/ x 0∂Ψ ∂ =  for the streamfunction and Dirichlet 
condition c=1 for the concentration. At the 
outflow boundary x=L there are Neumann 
conditions for both streamfunction and 
concentration: / x 0∂Ψ ∂ =  and , 
respectively. At the horizontal boundaries we 
require Dirichlet conditions for the 
streamfunctions:

/ 0c x∂ ∂ =

0Ψ = Ψ  at the lower (y=0) 
boundary and 0Ψ =  at the upper (y=H) 
boundary. At these closed boundaries we have 
the Neumann condition for c, which implies that 
there is no diffusive flux across the boundary. 



Due to the vanishing normal velocity component 
there is also no advective flux.  
As initial condition we chose a linear profile for 
the streamfunction , which fulfills 
the boundary conditions. For the concentration 
we require the condition: 
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The function f describes a random disturbance of 
the initial concentration pattern. ζ denotes the 
size of the disturbances and σ the variance in x-
direction. The disturbed concentration pattern is 
applid only in the vicinity of the inflow 
boundary. With these settings we follow 
Zimmerman & Homsy [vii] as well as Coutinho 
& Alves [viii], although negative values of 
concentrations may appear at some locations. 
However these unrealistic values vanish after a 
short initial simulation time and can thus not be 
seen as crucial for the simulation. 
All input parameters are listed in Table 1. 
 

Table 1: Parameters

Parameter Symbol Value & Unit 

Length L 500 m 

Height H 125 m 

Porosity ϕ 1 

Max. size of 
disturbance 

ζ 0.01 

Penetration 
length 

σ 500 m 

Transversal 
dispersivity 

αT 0.05 m 

Mobility ratio M log(3) 
 
 
4. Use of COMSOL Multiphysics  
 
For the simulations we used COMSOL 
Multiphysics software, which is based on the 
Finite Element method. Following the 
multiphysics concept of the software, we use two 
coupled ‘application modes’. Each of the two 

modes (Poisson, convection-diffusion) 
corresponds to a physical process or 
phenomenon (fluid flow, solute transport), and to 
a differential equation (equations (7) and (2)). 
The transport mode is linked to the flow mode, 
as the velocities, which are processed from the 
streamfunction according to equations (6), are 
required. The velocity components appear in the 
advective term as well as in the dispersion term 
(see equation (3)). The flow mode is linked to 
transport, as the viscosity/permeability ratio as 
parameter is concentration dependent, according 
to formula (8). The system of differential 
equation is coupled by these feedbacks.  
Note that one of the two equations is steady-state 
(flow), while the other is transient (transport). 
Altogether the coupled system is transient. 
Physically speaking the response of the flow to 
changes of the solute distribution is so fast that a 
corresponding storage term is neglected in 
equation (7) (as also already in equations, (5) and 
(1)).   
In the model longitudinal dispersivity αL is 
connected to transversal dispersivity αT by: 

 ( )2 21 1L T xu uα α= + − − y  (13) 

(see also Coutinho & Alves [viii]). We did not 
apply any artificial diffusion option. These 
options may be used to stabilize the numerical 
algorithm. However, the results may differ 
significantly from the physical solution, if 
numerical diffusion exceeds real diffusivities or 
dispersivities.  
The initial state for the concentration distribution 
is implemented as a MATLAB@ function, 
following equation (12).    
 

Table 2: Execution time with different meshes 

Mesh, #  
elements, DOFs 

Type Execution time (s)
(version 3.5a) 

156 702 free 1.4 

354 2650 “ 5.2 

2496 10290 “ 35.3 

9984 40546 “ 320.8 

16384 132354 mapped 721.7 
 



The equations are discretized according to the 
method of Finite Elements. We use quadratic 
Lagrange elements for both variables. Table 2 
provides an overview how execution time 
depends on meshes, free or mapped.  
The comparison of the runs with the finest free 
mesh and the mapped mesh indicates that models 
with mapped mesh perform faster than free mesh 
models of the same size. While the mapped mesh 
has more than three times more DOF, its 
execution time exceeds that of the free mesh run 
only by a factor slightly above 2. However for 
coarse mapped meshes the numerical results 
become completely wrong; for details see next 
section. 
 

Table 3: Performance of linear solvers  

Solver Execution time (s) 

 COMSOL 
version 3.4 

COMSOL 
version3.5a 

UMFPACK 153.3 131.7 

SPOOLES 204.7 178.1 

PARDISO 135.4 67.2 

PARDISO 
(out of core) 

- 187.7 

GMRES 221.5 107.4 

FGMRES 293.2 76.9 

Conjugate 
gradient 

no 
convergence 

no 
convergence 

BICGSTAB - 81.1 

Multigrid no 
convergence 

no 
convergence 

 
Flow and transport modes are solved 
simultaneously for the model. The resulting non-
linear system is solved by the Newton method, 
solving a linear system in each iteration step. 
First we explored the performance of several 
linear solvers, without changing any other 
parameters from their default values (we set 
relative accuracy to 0.01, and absolute accuracy 
to 0.001) for the free mesh model. The outcome 
of the solver test is given in Table 3. Obviously 
the PARDISO solver performs best. For that 
reason we investigated the effect of various 

options of the PARDISO solver. Shortest 
execution time of about 104 s (version 3.4) and 
39.9 s (version 3.5a) for the reference set-up was 
obtained by using the ‘minimum degree option’ 
(instead of ‘nested dissection’), ‘automatic’ 
check of tolerances (instead of ‘on’ or ‘off’) and 
disabled row pre-ordering. 

 
5. Results  
 
First results with coarse meshes show that the 
results depend very much on the mesh size.  The 
models with mapped meshes (128 x 32, 120 x 
40) did not lead to fingering. The mesh with 128 
x 64 rectangular elements, corresponding to 
66306 DOF (execution time: 822 s), as well the 
mesh with 256 x 64 elements (132354 DOF, 
execution time: 1593 s), led to fingering! 
The model reported in the following has 15744 
elements with quadratic basis functions, which 
corresponds to 8025 mesh points and 63586 
DOF (degrees of freedom). It is based on a free 
mesh with minimum quality of the elements of 
0.756 and the element area ratio of 0.238.  
Figure 1 shows the development of viscous 
fingering. The concentration is depicted as 
surface plot, where the dark color represents the 
replaced and the light color the replacing fluid. 
The transition zone between these fluids is very 
narrow. 
It is clearly visible that small fingers appear in 
the transition zone between the two phases a 
short time after the start of the simulation. While 
the front, which is not a straight line anymore, is 
penetrating from the left, the fingers grow in 
size. In the final figure (T=300) we observe the 
merging of the last remaining two fingers. 
Also shown in the plots are the streamlines, 
which are obtained here as contour lines of the 
streamfunction (they could also be constructed 
by using ‘streamline’ from the COMSOL post-
processing mode). 
 In addition we visualize the flow field by an 
arrow field, representing velocities. The figures 
show the effects on the flow field. The quasi-1D 
initial and mean state is disturbed significantly 
with the penetration of the entering fluid. In the 
transition zones there are steep velocity gradients 
in y-direction. In the last two figures it becomes 
very obvious that the flow in the replacing fluid 
is much faster than in the initial fluid, where the 
velocities have become very low.     
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Figure 1: Finger development, depicted for different time instants T by concentration c as surface plot, 

streamlines and velocity distribution, represented by an arrow field 
 



6. Conclusions 
 

Fingering phenomena can be modeled well 
by COMSOL Multiphysics. 

Comparison with results obtained by other 
modelers shows that the fingering dynamics is 
well captured, although finger details are quite 
different. This is not astonishing as the details of 
the fingers depend among other circumstances 
also on the random field, used as an initial 
condition for c. The random fields differ 
depending on the random number generators 
used by different modelers. Moreover the 
random field is also different for the different 
meshes; and thus fingering details can expected 
to differ even for the same model and 
parameters, if only a different mesh is used.   
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