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Abstract: This paper is concerned with the 
fatigue behaviour of complex, three-dimensional, 
stress concentrations under multiaxial loadings. 
Starting from the stress field obtained from a 
linear elastic analysis and taking advantage of 
the so-called implicit gradient approximation, an 
effective stress index connected with the material 
strength is calculated. The effective stress is 
calculated by solving a second-order differential 
equation over all the component (the implicit 
gradient approach) independently of its 
geometric shape. Besides this work summarizes 
a first investigation into the possibility of 
applying the implicit gradient approach to real 
components under both uniaxial and multiaxial 
loading conditions by introducing an appropriate 
multiaxial criterion into the implicit gradient 
framework. Generally speaking many multiaxial 
criteria could be used to this purpose, namely 
critical plane approaches, stress-invariant based 
approaches and integral approaches. However, 
since the aim of the present work is to obtain a 
numerically efficient other than the effective 
method, in this first attempt attention has been 
focused on stress-invariant based approaches that 
is suitable for high-cycle fatigue evaluation. The 
damage evaluation is obtained by analyzing the 
loading path on the 5-dimensinal deviatoric 
Euclidean space. Explicit analytical solutions of 
the proposed criterion are available in case of 
biaxial sinusoidal loads. The method in 
conjunction with implicit gradient approach has 
been applied to experimental results generated 
by testing notched specimens of low-carbon steel 
containing severe 3D stress raisers subjected to 
uniaxial and multiaxial in-phase and out-of- 
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1. Introduction 

 
Reliability design of real components with 

three-dimensional (3D), stress concentrations 
under fatigue loads is a subject of great practical 
interest to industrial engineers. 

Three-dimensional solid modelling tools are 
largely used by design engineers for virtual 
prototyping of new products or structures. In 
order to capitalize on the increased capability of 
these numerical aids, the applied research have 
to meet the needs of designers so that calculation 
tools must be developed to be integrated into 
solid modelling and FEM analysis of three-
dimensional components. 

In this context, the structural problems are 
often complicated by the presence of multiaxial 
stress state due to the complex geometrical 
shapes itself or complex loading conditions. In 
order to take into account the notch stress effect, 
notch stress approaches can be applied. In this 
way fatigue strength could be related to the 
stress–strain condition very close to the crack 
initiation point. Several methods have been 
proposed over the last few decades to estimate 
the fatigue life of notched components: Peterson 
[1] and Neuber [2] method; the Theory of 
Critical Distance [3]; the strain-life method [4]; 
the Notch Stress Intensity Factors approach [5]. 
Unfortunately, for real structures subjected to 
complex multiaxial loading conditions, this 
methods cannot easily be applied directly.  

Recently, Tovo et al. have proposed a “non-
local” model (Implicit Gradient approach) 
initially to predict static failure [6] and 
subsequently to evaluate the stress gradient 
effect on the fatigue strength of steel welded 
joints [7]. These methods are called ‘‘non-local” 
because the strength at a given ‘‘local” point is 
related to the stress–strain condition of the 
surrounding ‘‘non-local” material. Starting from 
a stress field obtained from a linear elastic 
analysis, this method provides a finite reliable 
solution of an effective stress all over the 
investigated solid, also at the sharp notches. 
Hence the implicit gradient is an interesting way 
of addressing the problem of fatigue strength 
evaluation of components affected by high stress 
raising effects. 

The aim of this paper is developing a 
numerical tool in conjunction with three-
dimensional modelling tools to be used by 
industrial engineers to predict multiaxial fatigue 
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assessment of mechanical components, affected 
by high stress concentrations and complex 
loading conditions. A first validation of the 
method will be proposed by analysing 
experimental data that we generated by testing 
3D-notched cylindrical samples made of a 
commercial cold-rolled low-carbon steel, 
subjected to combined tension and torsion 
loading, both in-phase and out-of-phase. 

 
2. Implicit gradient approach 
 

Early developments on non-local models 
were proposed by Eringen, Edelen [8] and 
Kroner in 1960 and were based on the 
assumption that the principle of local action 
could be violated. In particular it was proposed 
that the stress σ  depends not only on the strain 
ε  at the point x , but also a weighted average 
over a reference volume with weight 
proportional to the distance from x . So in a 
body with volume V and surface S, the non local 

stress tensor ( )xσ  at the point ( )1 2 3x x ,x ,x=  in V, 
can be obtained from the weighted average of 
local stress tensor ( )xσ  through the following 
expression: 

 

( ) ( ) ( ) ( )
r V

1x x, y
V x

σ = α ⋅σ∫ y dy  (1) 

 
In equation (1) ( )x,yα  indicates a scaling of 

the weight function that depends on the 
Euclidean distance x y−  between point x  and 
every point ( 1 2 3y y ,y ,y= )  of V.  

A variant of non-local integral definitions, 
defined as “implicit gradient model” was initially 
proposed by Peerlings et al. [9]. In fact, starting 
from the definition in terms of full non-local 
model (1), could be developed a gradient 
expansion of the non local scalar [10]: 

 

( ) ( ) ( )2 2x x c xζ ≅ ζ + ∇ ζ  (2) 

 
where c is a characteristic length related to 

the weight function ( )x,yα  defined on the whole 
volume V. For engineering applications, c is 
assumed to be related only to relevant material 
properties. In equation (2) the Laplacian operator 

is applied to the non-local equivalent stress, so 
that ( )xζ  can be obtained by solving an implicit 

type differential equation. In this type of 
analysis, usually, as boundary conditions are 
taken into consideration just the amount of 
Newmann, expressing the orthogonality of the 
gradient of the solution sought by the outgoing 
normal to the edge of the domain of integration:  

 
n 0∇ζ ⋅ =  (3) 

 
where n  is the normal to the surface of the 

body of volume V [11]-[9]. It results that eq. (2) 
is much easier to be solved numerically than 
eq.(1). For this reason, it can be applied to a 
three-dimensional domain, where the actual 
critical point cannot be previously assumed as it 
has to be localized by means of the numerical 
investigation. PDE Modes of COMSOL 
Multiphysics® has been used to solve eq. (2). 
Second order tetrahedral elements have been 
employed to mesh the three-dimensional models, 
as Neumann-type boundary condition has been 
applied at all side surfaces of the models. 

 
3. Fatigue life prediction

 
The fatigue behaviour is related to stress 

and,or strain variations. In this work, we will 
consider only non-proportional constant 
amplitute loading, so that fatigue life can be 
simply expressed by an equivalent stress 
amplitude. By means of eq. (2), an equivalent 
deviatoric stress amplitude d,aσ , linked to fatigue 
life, can be defined assuming that  and 
assuming as local scalar the equivalent deviatoric 
stress amplitude resulting from an isotropic 
linear elastic solution 

d,aσ =ζ

d,aσ =ζ . Eqs. (2) and (3) 
become: 

 
2 2

d,a d,ad,a cσ ≅ σ + ∇ σ  (4) 

( )d,a 0∇ σ ⋅ =n  (5) 
 
However, to correctly define the equivalent  

deviatoric component, it must be considered that 
under non-proportional loading the principal 
stress directions are not constant. For this reason, 
it could be necessary to apply a multiaxial 
criterion together with the stress gradient 



approach under mixed-mode loadings, in order to 
correctly evaluate fatigue strength. 
 
3.1. Definition of the equivalent amplitude of 
the deviatoric component

 
From a theoretical point of view many 

multiaxial criteria could be used into the implicit 
gradient approach, namely critical plane 
approaches, stress-invariant based approaches 
and integral approaches. In fact, such criteria 
make use of scalar quantities that can be 
introduced as equivalent stress in eq. (4). 
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Figure 1. Loading path. 

 
In this work, multiaxial fatigue damage 

calculation is then performed by means a stress-
invariant based criterion (PbP approach) 
proposed by Cristofori et al. [12]-[13]. It makes 
use of deviatoric component 

In order to propose a procedure suitable for 
addressing the above problem, the principal axes 
of path Γ  can be attempted to be used to define a 
unique frame of reference suitable for accounting 
for the presence of non-zero out-of-phase angles. 
For this purpose, to correctly calculate the 
directions of the above principal axes, path 

( )d tσ  and 
hydrostatic component ( )H tσ  to evaluate the 
damage due to generic fatigue loading. Γ  

can be treated as a continuum, so that, its 
centroid can be determined as follows[17]: According to the notation used for Crossland 

invariant criterion [14], the deviatoric tensor  
( )d tσ  can be concisely represented as a 5- 

element vector defined as follows: ( )m,i i
1s s t
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 (6) 

 
As an external load is applied the tip of the 

vector ( )s t  describes a curve , the deviatoric 
stress component loading path, as show in Fig. 1. 
There are several various ways of defining the 
range of the deviatoric vector so identified [15]- 
[16]. PbP approach takes as a starting point the 
hypothesis that the damage related to a generic 
loading path  can be estimated by considering 
the single contributions  calculated by 
projecting the loading path itself along the axes 
of a frame of reference chosen as a base of the 
Euclidean space. 

Γ

Γ
Γp,i

dt

T
T

= ∫    (7) i 1,.....,5=

 
where T is the period. Moreover, using a 

definition similar to the one adopted to define 
continua’s moment of inertia, the rectangular 
moments of inertia of path  can be represented 
with respect to its centroid by using the 
following symmetric square matrix of order five: 

Γ

 
( )( ) ( )( )ij i m,i j m, jC s t s s t s dt

T

= − ⋅ −∫ i, j 1,.....,5=   (8) 

 
This matrix has five eigenvalues and five 

orthogonal eigenvectors. The eigenvalues are the 
principal moments of inertia, whereas the 
eigenvectors are the principal directions of the 
tensor path calculated with respect to the 
centroid itself. Finally, the loading path Γ  can 
be projected along each frame axis (suffix i) so 
that, the equivalent deviatoric stress amplitude, 

d,aσ , can be calculated, in according to the PbP 
approach, as follow: 

 

( )2d,a d,a i
i

σ = σ∑  (9) 

 



where ( )d,a iσ  is the amplitude of the 
projection along ith axis. 

 
3.2. Multiaxial high-cycle fatigue criteria 

 
Fatigue limit calculation is perform by the 

biparametric method, proposed by Lazzarin and 
Susmel [18], formulated in terms of stress tenson 
invariants. According to this approach, fatigue 
bihaviour is related to the multiaxial stress ratio, 

, between the non local values of the 
hydrostatic component, 

FLρ

H,maxσ  and the deviatoric 
stress component, : d,aσ

 
H,max

FL
d,a

3 σ
ρ = ⋅

σ
 (10) 
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For a given loading condition, the estimated 

fatigue limit value, 
FL

d,A ρ
σ , can be calculated by 

assuming a linear variation of 
FL

d,A ρ
σ  to respect 

to . Generally, the uniaxial fatigue limit, FLρ

FL
d,A 1ρ =

σ  and the torsional fatigue limit 
FL

d,A 0ρ =
σ  

are used to calibrate the criterion: 
 

FL FL FL FL
d,A d,A FL d,A d,A0 0ρ ρ = ρ = ρ

⎛σ =σ +ρ ⋅ σ −σ⎜
⎝ ⎠1=

⎞
⎟  (11) 

 
Finally, the general form for this criterion 

can be written by comparing the non local value 
of the deviatoric stress component and the 
estimated fatigue limit value: 

 

FL
d,a d,A ρ

σ ≤ σ  (12) 

 
4. Experimental details and results 
 

In order to check the validity of the fatigue 
assessment procedure proposed previously, 70 
tests were carried out by testing cylindrical 3D-
notched specimens having cross diameter equal 
to 8 mm and made of a commercial cold-rolled 
low-carbon steel, En3B. This material had an 
ultimate tensile strength, , equal to 676 
MPa, a yield stress, , equal to 653 MPa and a 
Young’s modulus equal to 208500 MPa. The 
geometry of the tested fatigue samples is show in 
Fig. 2.  
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Figure 2. Geometry of the tested specimen. 
 
The specimens are characterized by severe 

stress raisers with root radius equal to 0.03mm. 
Such specimens were tested under pure tension, 
pure torsion and mixed tension–torsion loading 
in-phase and 90° out-of-phase, by imposing a 
uniaxial and torsional load ratio, R, equal to −1. 
Under biaxial load, two different ratios, δ , 
between the amplitudes of the tensile, , and 
torsional, 

x,aσ

xy,aτ , stress refers to the gross section 

were considered, that is,  and 1δ = 3δ = . All 
tests were carried out in the Department of 
Mechanical Engineering, Trinity College of 
Dublin on a Instron® 8874 servo-hydraulic axial-
torsional testing system with an axial cell ±10 
KN and a torsion cell of ±100 Nm. All tests have 
been performed under load control, with a 
frequency ranging from 8 and 16 Hz, as a 
function of load value. During all fatigue tests, 
the specimen stiffness has been monitored and 
the fatigue failure was defined by 10% stiffness 
drop, which resulted in cracks, emanated from 
the tip of the notch, having length of about 1 
mm. In agreement with observed fatigue 
behaviour, high-cycle endurance limits were 
extrapolated at N =2·106

A  cycles. A summary of 
the results obtained from the experimental 
investigations of all series is given in Table 1. 

 
 
 
 

 
 



Table 1 5. Procedure and calculation tools . Summary of the experimental fatigue results.
σ  A,50% 

Loading conditions Series 
σa

[Mpa] 
τa

[Mpa] 
φ R 

No. 
data 

Slope 
k 

at 2·106 

To clarify this procedure it is important 
highlight here the fundamental steps that we 
need to obtain a multiaxial fatigue damage 
evaluation by means of aforementioned non local 
approach in conjunction with PbP criterion:  

cycles 
[MPa] 

Uniaxial 1 0 0° -1 15 3.76 75.7 

Torsional 0 1 0° -1 16 6.87 66.1 

Biaxial in 
phase  1 1 0° -1 13 4.98 68.7 

1) Linear elastic stress analysis has to be 
carried out for any external loading applied. 

Biaxial out 
of phase 1 1 90° -1 11 4.61 66.7 

Biaxial in 
phase  1.73 1 0° -1 8 5.67 52.7 

2) Maximum variance reference frame are 
calculated for any nodal point. 

Biaxial out 
of phase 1.73 1 90° -1 7 5.36 52.9 

  
In Fig. 3, the pictures showing the generated 

crack paths on the surfaces of different 
specimens for various loadings conditions. 

3) Local values of the equivalent deviatoric 
stress amplitude, d,aσ , and hydrostatic 
component, H,maxσ , are evaluated for any nodal 
point.  

 
 
 
 
 

 
H,maxσd,aσ  and 4) Non local values of the  

are calculated by means of the implicit gradient 
approach: 

 
2 2

d,a d,ad,a cσ ≅ σ + ∇ σ  (13)  
 ( )d,a 0∇ σ ⋅ =n  (14) 

  

2 2
H,max H,maxH,max cσ ≅ σ + ∇ σ  (15) 

( )H,max 0∇ σ ⋅ =n  (16) 
 
5) Multiaxial stress ratio, , between the 

non local values of the hydrostatic and deviatoric 
stress components is evaluated: 

FLρ

 
a)           b)  

  

H,max
FL

d,a
3 σ

ρ = ⋅
σ

 (17) 

 
6) Fatigue limit value, 

FL
d,A ρ

σ , for a given 

loading condition is calculated by means eq. 
(11).  

 c)           d)
7) Fatigue life estimation is finally 

performed at each nodal point: 

  

 

FL
d,a d,A ρ

σ ≤ σ  (18) 

 
To conclude, the flow-chart reported in Fig. 

4 summarizes the procedure above explained and 
highlights the software used. In particular, have 
been used the Structural Mechanics Models of 
COMSOL Multiphysics

 
e)           f)
Figure 3. Examples of the observed crack path.
 ® to perform linear 



elastic stress analysis and Matlab® to calculate 
the projection system frame, equivalent 
deviatoric stress amplitude, , and hydrostatic 
component, , for any nodal point. Finally 
PDE Modes of COMSOL Multiphysics

d,aσ

H,maxσ
® has 

been used to solve eq. (13)-(15) and to perform 
the fatigue life estimation. Moreover, to shift 
working environment , it was necessary to 
establish suitable import and extraction’s routine 
of the stress nodal quantities. 
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Figure 4. Procedure framework.
 
 
8. Numerical results  

  
The following summarises the application of 

the above procedure. The error factor is defined 
as: 

 

( ) A,exp A,fem

A,fem

E % 100
σ −σ

=
σ

×  (19) 

Post-processing and the numerical value of 
the damage index are depicted in Fig. 5. Sub-
modeling technique was used to employ refined 
mesh near the singularity points in order to 
obtain the convergence of the non local stress 
field. The results in terms of tensile and torsional 
stress amplitude refered to the gross section, are 
summarised in Table 2.  

Hence, an error factor of greater than zero 
indicates a conservative prediction. The locations of the the hot-spot predicted by 

FEA (maximum damege index) agree with the 
experimental crack initiation points. 

 
 

  
 

 
 
 
 
 
 
 



 

   
a)                  b)

   
c)                  d)

   
e)                  f)
Figure 5. Damage index.
 
 
Table 2. Synthesis of the numerical results.
GEOMETRY LOAD 

CONDITIONS 
EXPERIMENTAL 

RESULTS 
FATIGUE STRENGTH 

PREDICTION 
ERROR 
INDEX 

CRITICAL POINT LOCATION 

 σa 
[Mpa] 

τa 
[Mpa] φ R σA 

[Mpa] 
τA 

[Mpa] 
σA 

[Mpa] 
τA 

[Mpa] E(%) x 
[mm] 

y 
[mm] 

z 
[mm] 

1 0 0° -1 75.7 − 77.5 − -2.3% 0.00 0.00 0.00 

0 1 0° -1 − 66.1 − 67.5 -2.1% 0.84 0.00 0.85 

1 1 0° -1 52.7 − 50.8 − 3.7% -0.25 0.00 0.25 

1 1 90° -1 52.9 − 54.3 − -2.6% -0.00 0.02 0.04 

1.73 1 0° -1 68.7 − 66.3 − 3.6% -0.03 0.01 0.06 

 1.73 1 90° -1 66.7 − 66.3 − 0.6% -0.00 0.02 0.04 

 
 
 
 
 
 
  



7. Conclusions 
 
In this work was considered both the effect 

on the fatigue strength due to the presence of 
complex three-dimensional (3D) notches 
(gradient effect) and the multiaxial effect caused 
by external loadings as well as by multiaxial 
stress fields due to severe stress raisers 
(multiaxial effect). Moreover we developed a 
numerical tool in conjunction with three-
dimensional modelling tools to be used by 
industrial engineers. Finally, in order to validate 
the proposed approach, theoretical fatigue 
estimations and experimental data was 
compared. The major conclusions can be 
summarised as follow: 

- The devised approach is seen to be highly 
accurate in estimating high-cycle fatigue damage 
in mechanical components without the need for 
assuming a priori the position of the critical 
point. 

- This approach is capable of efficiently 
taking into account the presence of both 
multiaxial loading and non zero out-of-phase 
angles. 

- The implicit gradient method applied in 
conjunction with PbP approach proved to be a 
powerful engineering tool capable of efficiently 
designing complex, i.e. three-dimensional (3D), 
stress concentrations against multiaxial fatigue. 

- The fatigue life estimation technique 
proposed in the present work is suitable for being 
used in situations of practical interest by directly 
post-processing simple linear-elastic FE models. 

- Even if the results obtained so far are very 
satisfactory, more work needs to be done for a 
complete validation of this method. 
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