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Abstract: Efficient modeling and computation 
of the nonlinear interaction of fluid with a solid 
undergoing nonlinear deformation has remained 
a challenging problem in computational science 
and engineering. Direct numerical simulation of 
the non-linear equations, governing even the 
most simplified fluid-structure interaction model 
depends on the convergence of iterative solvers 
which in turn relies heavily on the properties of 
the coupled system. The purpose of this work is 
to model and simulate multi-physics applications 
that involve fluid-structure interaction using a 
distributed multilevel algorithm with finite 
elements. The proposed algorithm is tested using 
COMSOL which offers the flexibility and 
efficiency to study coupled problems involving 
fluid-structure interaction. Numerical results for 
some benchmark fluid-structure interactions are 
presented that validate the proposed 
computational methodology for solving coupled 
problems involving fluid-structure interaction is 
reliable and robust. 
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1. Introduction 
 

The efficient solution methodology to 
complex multi-physics problems involving fluid-
structure interactions (FSI) is a challenging 
problem in computational sciences. Such 
problems require studying complex nonlinear 
interactions between the structural deformation 
and the flow-field that often arise in applications 
such as blood-flow interaction with an arterial 
wall or computational aero-elasticity of flexible 
micro-air vehicles.  

In the last two decades, domain 
decomposition techniques have become 
increasingly popular for obtaining fast and 
accurate solutions of problems involving coupled 
processes [1, 2, 3]. These viable domain 
decomposition techniques have been shown to be 
stable mathematically and have been 
successfully applied to a variety of engineering 

applications [4, 5, 6]. The basic idea is to replace 
the strong continuity condition at the interfaces 
between the different sub-domains by a weaker 
one to solve the problem in a coupled fashion. 
The purpose of this paper is to develop a coupled 
FSI algorithm and implement the algorithm 
using COMSOL to some benchmark FSI 
problems.  

In section 2, we present the formulation of a 
one-dimensional FSI problem using an arbitrary 
Lagrangian Eulerian formulation and employ the 
finite element method via COMSOL for solving 
the coupled problem. In section 3, we present an 
optimal control formulation of the FSI problem 
for the 1-D problem presented in section 2. In 
section 4, we consider a three dimensional FSI 
problem with application to micro-air vehicles.  
 
2. A Coupled One-Dimensional FSI 
Model Problem 
 

For simplicity of presentation, we first 
develop the model for a one-dimensional FSI 
problem that involves a structural domain 
interacting with a fluid medium. The model is set 
up so that initially the fluid domain occupies the 
interval (–1, 0) and the elastic structure occupies 
the interval (0, 1). As the fluid flow deforms the 
adjacent solid, we allow the movement of the 
interface to depend on the velocity of the fluid. 
This is illustrated in figure 1 below. 

 
Figure 1: Undeformed and deformed  

computational domains 
 

We denote by )(tγ  the position of this 
interface at any positive time t. For all values of  
x in the interval (–1, )(tγ ), we model the fluid 
velocity v and the pressure p using a 
generalization of models employed by [7] using:  
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In this model, 0)( >= ναα  is a parameter 
depending on the kinematic viscosity ν  of the 
fluid. The constants ]5.0,0[∈β  and 

0≥ε vary depending on the material properties 

of the fluid. Here ff is the external force on the 

fluid. In this work we consider the specific case 
of the Burger’s equation using the parameter 
choices, 0,5.0, === εβνα . It is well 
known that this choice of values yields stability 
of the numerical methods employed for the 
problem whenever no pressure term is included.  

The fluid model is coupled with an elastic 
model that represents the structure. In particular, 
we consider the wave equation that models the 
solid displacement u of any point in the adjacent 
structure from its initial position given by: 

 
 
 
Here 0>µ  and sf is the external force on 

the structure. Also, the position of the interface 
between the two sub-domains must satisfy the 
movement at the interface for all times. 

At the interface between the fluid and 
structure, we enforce continuity of the fluid 
velocities and the action-reaction principle: 

 
 
 
 
In order to account for the changing nature of 

the fluid, we consider the arbitrary Lagrangian-
Eulerian (ALE) formulation [8]. This will allow 
for a dynamic computational gird that avoids 
extreme mesh distortion near the interface. To do 
this one can move the numerical grid 
independently of the fluid velocity on the fluid 
domain. Defining the grid velocity as:  

 
 

 
 
Note that 0),0(),()),(( == twtttw γγ & . Thus 
the grid velocity is consistent with the velocity of 
the fluid at the endpoints of the fluid domain. 
Additionally, we assume ]1,1[)( −∈tγ  for all 
time. The ALE form of the fluid equation that we  
then solve is: 
 

 For the boundary conditions, we let the fluid 
velocity v(–1, t)=sin(0.1π t) and  the structural 
displacement u(1, t) = 0 for all times. For initial 
conditions, both the fluid and the structural 
domain are at rest initially. 
 The FSI coupled system described was 
implemented in COMSOL and the results of the 
finite element implementation of the model is 
summarized in figure 2 that displays the plot of 
the fluid velocity v and the structural velocity ut 
over the time period from 0 to 1.  

 
Figure 2: FSI simulation using COMSOL  

for time t=0 to 1. 
  
3. Coupled FSI problem with Control 
 

A related aspect that we consider in this work 
is investigating distributed control for FSI 
problems. In particular, one can study the 
coupled FSI problem using an optimal control 
formulation to predict the distributed control that 
corresponds to a prescribed velocity v̂ and 
displacement data û  that satisfies the boundary 
conditions. Specifically, we want develop a 
model that predicts the force that results in the 
minimization of the error in the fluid velocity 

|ˆ| vv −  and the solid displacement |ˆ| uu − . 
For simplicity, let us consider the one-
dimensional model problem presented in section 
2 and extend it to include control aspects.  

Towards this end, let us consider the related 
cost functional for the associated non-linear FSI 
problem (note that one can similarly consider the 
linear FSI problem by dropping the 
corresponding linear terms which is not 
described here ) given by: 
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where l and g are the Lagrange multipliers 
corresponding to the fluid velocity and the solid 
displacement respectively. Moreover, we also 
impose the continuity of the velocities over the 
coupled domain.  

Proceeding using the standard optimal 
control approach of minimizing the cost function 
by taking the variations yields the following 
auxiliary system of governing equations:  

 
In the fluid domain 01 ≤≤− x : 
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In the solid domain 10 ≤≤ x : 
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For numerical experiments, we consider a 

simple solid displacement profile and the fluid 
velocity profile given by: 
 
 
 
The problem was implemented in COMSOL to 
yield the following velocity and displacement 
profiles in the respective domains. This is 
illustrated in Figures 3 and 4 where the 
prescribed solution is plotted against both the 
solution to the both the linear and non-linear 
control problem. 

 
Figure 3: Displacement profile comparing the 
prescribed solid displacement with linear and  

non-linear control models. 

 
Figure 4: Fluid-velocity profile comparing the 

prescribed velocity with linear and 
non-linear control models 

 
4.  A Coupled multi-dimensional FSI problem 
with applications to MAVs 
 
A Micro Air Vehicle (MAV) is a type of radio-
controlled miniature aircraft that can fly at very 
low speeds. Due to the complexities of the wing 
structure of a MAV, a computational model of 
the aircraft wing requires a combination of many 
structural elements interacting with external 
fluid.  

The wing typically consists of a flexible 
membrane material braced with a leading edge 
spar and chordwise battens (see Figure 5). The 
structural model must combine the model of the 
membrane material together with the model of 
the rigid battens. Most current models treat the 
battens as large-density membrane elements. 
Modeling this coupled two-dimensional 
structural model interacting with a three-
dimensional fluid makes the problem very 
challenging.  
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Figure 5: A simple model of a flexible MAV wing 
 

In this work, we attempt to come up with a 
mathematical model that can provide insight into 
the dynamics of MAVs. The model presented 
herein is simplistic; however, one may extend 
this to accommodate other features. 

In order to get an insight into the modeling 
and dynamics of a MAV, let us consider a 
cylindrical computational domain. In this domain 
we will assume that the fluid satisfies a potential 
equation and that a two-dimensional structural 
model (that will represent the MAV) is a part of 
one of the circular surfaces. This latter surface 
will represent the outflow boundary of the 
computational domain which is illustrated 
below: 
 
 
 
 
 
 
 
 
 
 
 
       Figure 6: Computational domain for MAVs 
 
Let the computational domain be partitioned into 
three sub-domains iΩ , i=1,2,3. Let 3Ω  

represent the cylinder in the computational 
domain where the following governing equations 
hold: 
 
 
 

 
 
 
 

Here N
fΓ  corresponds to the lateral surface of 

the cylinder where Neumann boundary 
conditions are prescribed.  

The outflow part of the computational 
domain consist of the following sub-domains: 

O
fΓ corresponds to the outflow region that is not 

a part of the structural domain; 2Ω corresponds 
to the structural domain that involves the three 
battens; 1Ω  corresponds to the structure (shaded 
grey) that does not involve the three battens. We 
will assume the following adsorption condition:  
 
 

where a is a constant. Also, I
fΓ corresponds to 

the inflow surface where we prescribe: 

 
For the structural model of the MAV that is 
modeled via the sub-domains 1Ω and 2Ω we 
consider the following governing membrane 
equations for the deflection of the membrane w: 
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where 10 ,EE  are the constants corresponding to 

the elastic modulus and second moment of area 
for each of the sub-domains 1Ω  and 2Ω  

respectively. Also, 10 ,ρρ are the respective 

densities of the membrane and the battens. It 
must also be pointed out that half of the MAV 
edge was kept rigid to reflect the leading edge 
spar. The two systems are also coupled through 
the continuity of the velocities:  
 
 
The fully coupled system described herein was 
modeled and solved in COMSOL and the results 
for the membrane deflection are shown in 
Figures 7 and 8. 
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Figure 7: Three-dimensional MAV 
membrane wing deflection 

 
Figure 8: Two-dimensional MAV 

membrane wing deflection 
 
5. Conclusions 
 
 In this work, a coupled computational 
methodology to solve problems that involve 
fluid-structure interaction has been presented for 
various benchmark problems. The problems 
considered in this work included a one 
dimension problem coupling fluid and structure 
with and without control and an application 
problem in three dimensions involving MAVs.  
The one dimensional problems provide a great 
insight into the nature of the coupled behavior of 
the interaction between the fluid velocity and the 
structural displacement. The importance of the 
non-linear term in the fluid equations was 
illustrated in the control problem that helped 
decrease the error between the prescribed and 
computed solutions. 
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