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Abstract: We present a numerical model we 
have created and verified to characterize the 
frequency dependence of the effective magnetic 
permeability and permittivity of a core-shell 
(CS) nanostructure composed of a magnetic core 
and a plasmonic shell with well-controlled 
dimensions for different geometries and 
polarizations. We analyze several possible shell 
shapes involving sharp edges and tips. The 
model sets the foundation of quantitatively 
determining the spatial confinement of the 
electric field in regions ≈ 20 nm in linear 
dimension. The practical rational for this 
research direction is the importance of the 
microwave functionality of the magnetic (core) 
nanoparticle and the optical properties of the 
plasmonic shell for characterizing biological 
cells. The ability to manipulate and remotely 
control specific cellular components by optical 
antennas has the potential to provide scientists 
and clinicians a powerful tool for investigating 
cell function and molecular signalling pathways, 
as well as to provide a platform for the 
development of new treatments. 
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1. Introduction 
 

In this paper, we investigate the long-
wavelength electromagnetic properties of 
resonant magnetoplasmonic CS nanostructures 
with well-controlled dimensions. Although the 
role of the PLRs and interface phenomena in 
such CS nanostructure extends beyond any 
specific example, the present study has been 
motivated by our interest in nanoantenna based 
on hybrid magnetoplasmonic C(Fe3O4)S(Au) 
nanostructures for biological applications, i.e. the 
dielectric properties of the host matrix can be 
assimilated to water. In our investigation we 
have carried out FE calculations on a 2D (3D 
infinitely long cylinder) model [1-5]. Ideally, one 
would like to study a CS nanostructure in the 

form of a 3D finite structure. However, we adopt 
here the same notations and conventions as in [1] 
because computations in 2D are more tractable 
than in 3D. Importantly, our results show a 
significant sensitivity of the shape anisotropy of 
the CS to its electromagnetic parameters. As will 
be discussed in detail below, these results are 
complimentary to those obtained on isotropic CS 
nanostructures as discussed in the recent 
literature [1-6]. To illustrate the effects of shape 
anisotropy of the structure, we analyze several 
possible CS nanostructures shell shapes 
involving sharp edges and tips. This permits to 
investigate the effects of geometric parameters 
for a given CS nanostructure and exciting field 
polarization on the PLR spectral position. 
Finally, we also examine the effects of these 
parameters on the intensity of the electric field 
enhancement (EFE) and magnetic field 
enhancement (MFE). We show that the effective 
active area, corresponding to the largest values 
of the EFE (hot spots), is a small fraction of that 
occupied by the CS nanostructure. We present 
data which strongly indicate that the PLR is 
locally amplifying the electric field in regions 
≈ 20 nm in linear dimension.  
 
2. Preliminaries 
 
2.1 Model of the CS nanoantenna  
 

As in many earlier calculations of the 
effective electromagnetic properties of 
heterostructures, the essential ingredients in the 
simple model we consider are as follows. (i) An 
important simplification takes place if one is 
interested only in the long-wavelength behavior 
of the system. The validity of this mean-field 
approximation is rooted in the fact that all length 
scales must be much smaller than the wavelength 
of radiation, or equivalently that the effective 
wavelength for the composite should be larger 
than ξ , where ξ denotes a typical length scale 
that characterizes the inhomogeneities in the 
material medium. Put in this way, this crucial 
constraint provides an upper bound to F, i.e. F 
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≤ 2 ' '/( )c RΦ ε μπ , where Φ denotes the surface 
fraction of the CS inclusion [7]. (ii) We use a 
continuum modelling approach built upon 
constitutive equations which can capture the 
material behavior on experimentally relevant 
scales, i.e. the local electrical response in terms 
of a position dependent permittivity. (iii) We 
further assume that within these linear response 
calculations, only linear effects are accessible to 
this technique, i.e. the interaction of the CS 
structure with the electromagnetic wave is 
modelled by induced electric and magnetic 
dipole moments. Notice that the penetration 
depth of electromagnetic waves at optical 
frequencies is about 20 nm for Au.  
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Fig. 1 illustrates the simple yet sufficiently 
realistic geometry we are interested in. 
Specifically, we consider a cross-sectional view 
of a CS nanostructure composed of a magnetic 
core (black area, phase 3) which is coated by a 
plasmonic shell (grey area, phase 2).  
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plasmonic shell (grey area, phase 2).  

 
 

Figure 1: Illustrative examples of CS nanostructures 
considered: (a) isotropic case; (b), (c), and (d) refer to 
representative anisotropic CS nanostructures situations 
where the shell of the CS nanostructures involves 
sharp edges and tips. 
 

The parameterization involved in the 
modelling is schematically described in Fig. 2. In 
our simulations, R-e=30 or 45 nm, the surface 
fraction of the Au phase is fixed to 0.033 and Φ 
was kept constant to 0.1, i.e. we restrict to the 
dilute limit corresponding to dipolar properties. 
Frequency-space descriptions, in which the fields 
have a harmonic time evolution 

, allow describing the complex 
permittivity and magnetic permeability of the 
phases by 

(exp 2j Ft∝ − π )

i( ) ' "i iF jε ε ε= −

i

 and 
( ) 'i i "F jμ μ= − μ , respectively; where the 

index i denotes the phase. The CS nanostructure 
is embedded in a host medium (phase 1). The 
choice of value for the intrinsic permittivity of 

phase 1 is specific to the application we have in 
mind, i.e. to create new functional materials for 
applications in a biological environment. 
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Figure 2: Cross-sectional view for the infinite CS 
nanostructure (i.e. for type a) investigated. The square 
cell has size L in the x-y direction and is infinitely 
extended in the z direction. Since typical values of the 
radius and shell thickness are R=50 nm and e=5 nm, 
respectively, the shell thickness is greatly exaggerated 
in this figure. 

 
The next simplification of the model we 

make in order to provide a simple physical 
picture is to consider that phase 3 is uniformly 
and totally magnetized (macro spin). For the 
purposes of this paper we adopt the following set 
of definitions: 1 2 1μ μ= =

3 0( )

, and the spectral 
function for μ3 we shall focus on is 

2 2
0

3 3

( ) 1 /(( ) )
' "

MF F F j Fμ α+
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F j F F
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α
μ μ

= + + +

= −
, 

with γ= π , 0 0 / 2F Hγ= π , and 
2

0 / 1RF F α= + . In the case considered here, 
the magnetic permeability can be obtained from 
the Landau-Lifshitz-Gilbert equation [8], which 
describes the precession motion of the 
magnetization in an effective magnetic field. As 
usual, Ms denotes the saturation magnetization, γ 
is the gyromagnetic ratio of the electron, H0 is 
the resonant magnetic field, and α is the Gilbert 
damping parameter. In our analysis we have used 
the values γ/2π=2.8 GHz/kOe, MS = 70 Oe, FR = 
4.5 GHz, and α=10-2 reported for pure Fe3O4 [8]. 
Table 1 summarizes the actual numerical values 
of the parameters used in this paper. 
 



Parameter Au Fe3O4 
'ε∞  7 4.73 

Fp (Hz) 2.23 1015 7.25 1012 
τ (s) 2.65 10-14 8 10-14 

 

Table 1. Main dielectric parameters used in this 
analysis. 

 

It is common practice to express the intrinsic 
(relative) permittivity of the surrounding media 
(as previously mentioned, the dielectric 
properties of the host matrix can be assimilated 
to water) in the form '

1 1( ) /(2 )F j F 0ε ε ε= − π

1.77=

2 2 1(2 ) )F jF τ −− π

, 

where  (resp. ) in the GHz (resp. 
THz) range of frequencies [9]. Following Drude, 
the intrinsic (relative) permittivity can be written 
as . These 
generic parameter values are only illustrative and 
have been chosen since they can be helpful for 
biomedical applications. 

'
1 80ε =

( ) 'ε ε ∞

'
1ε

/(pF F= −

 
2.2 Numerical simulation 
 
We briefly examine the principle of our 
numerical method viewed from the continuum 
perspective. Our theoretical studies are 
performed using finite element (FE) calculations 
implemented within the FE Comsol Multiphysics 
simulation package. We treat the calculations of 
the effective magnetic permeability and 
permittivity simultaneously. The details and 
implications of the FE meshing method were 
discussed in Refs. [1-3,10]. Although involved in 
some of its details, our procedure is conceptually 
simple. Unless otherwise specified, ε and μ were 
calculated by considering as a model system a 
square cell of size L (Fig. 2) with periodic 
boundary conditions by imposing V=V2=1 V on 

, V=V1=0 V on 1Γ 3Γ  and  on 
and , and J=J2=1 Am-2 on , J=J1=-1 

Am-2 on  et 

/V n∂ ∂ =

1Γ
0

2Γ 4Γ

3Γ × = 0H n   on and .  2 4ΓΓ
 A few comments are in order. In order to 
validate this method and characterize the 
generality of the behavior we observe, a first 
indicator is to compare these values with those 
evaluated by Wiener and Hashin-Shtrikman 
bounds. Skipping the details, we just announce 
the conclusion: for a wide range of parameters, 
our numerical results compare favorably with 

theoretical predictions by Wiener and HS bounds 
of the region of the complex plane inside which 
values of ε and μ are allowed. As a further cross-
check of method and a practical test of the 
quality of the numerical calculations for the 
electromagnetic parameters, the calculated 
effective ε and μ were also compared to 
independent predictions given by the Kramers-
Kronig (KK) relations which, as described in e.g. 
[10], require no assumptions about the nature of 
the polarization or magnetization behaviors. The 
residual errors in, e.g. 'ε , with respect to the 
value obtained from KK relation were less than 
0.5 % throughout the entire frequency range 
investigated.  
 
3. Results and discussion  
 
We begin by showing in Fig. 3 some plots of the 
real and imaginary parts of the effective 
magnetic permeability spectra (4 GHz<F<5 
GHz) for R-e=30 nm.  
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Figure 3. (a) The real part of the complex 
effective magnetic permeability is plotted versus 
frequency of the magnetic field, for the CS 
structures considered in Fig. 1 and R-e=30 nm. 
The letters and corresponding lines (black: a, 
red: b, green: c, and blue: d) refer to the 
structures displayed in Fig. 1. The magnetic field 
is defined to be along the x-axis. (b) Same as in 
(a) for the imaginary part of the complex 
effective magnetic permeability.  



Fig. 3 (a)-(b) reveal two remarkable features. 
First, we note the unambiguous evidence of the 
gyromagnetic resonance (GYR) at a spectral 
position close to that of pure Fe3O4 (4.5 GHz) as 
expected. The second feature of these figures is 
that the curves for the four examples of CS 
nanostructures are exactly overlaid over the 
entire range of frequency explored, suggesting 
that the effective demagnetizing field is similar 
in each case. In addition, the values of μ do not 
depend (not shown) on the direction of the 
magnetic field taken to calculate μ as expected. 
Fig. 4 depicts the simulation of the spatial 
distribution of the MFE for the gyresonance 
mode (4.53 GHz) for the four CS structures 
considered in Fig. 1. The maximum value 
attained by the MFE is directed along the x axis, 
is localized in the core of the nanostructure, and 
is .  1.5≈
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4. Spatial distribution of the magnetic 
field enhancement (MFE) for the gyresonance 
mode (4.53 GHz) for the 2D CS structure 
considered in the inset of FIG. 1. , R=50 
nm and e=5 nm. The arrows indicate the 
orientation of the magnetic field. 

0.1Φ =

 
Having discussed the general trend of μ as a 

function of frequency in the GHz range and its 
relation to the geometry of the CS nanostructure 
some comments have to be made yet about the 
spectral evolution of ε in the few hundreds of 
THz range. The results of this analysis are shown 
in Fig. 6 R-e=30 nm. Figs. 5 (a) and (b) illustrate 
how the real and imaginary parts of the effective 
permittivity spectra (100 THz<F<500 THz) vary 
when the electric field is along the x-axis or the 
y-axis for the four CS nanostructures. The 
tunability of the PLR as a function of the 

orientation of the applied electric field and the 
shape of the structure can be clearly seen. The 
most striking feature of these graphs is the 
blueshift (resp. redshift) of the PLR when 
passing from the isotropic shape of structure a to 
the anisotropic shapes of structures b, c, and d.  
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Figure 5. (a) Evolution of the spectral behavior 
of the real part of the effective permittivity for 
the CS structures considered in Fig. 1 and R-
e=30 nm. The letters and corresponding lines 
(black: a, red: b, green: c, dark blue: d, light 
blue: b, pink: c, and yellow: d) refer to the 
structures displayed in Fig. 1. The electric field 
is defined to be either along the x-axis (Ex) or 
the y-axis (Ey). (b) Same as in (a) for the 
imaginary part of the effective permittivity of the 
complex effective permittivity.  
 

We also discuss the sensitivity of the 
maximum value of the EFE as a function of 
frequency of the electric field. Fig. 6 (a) shows 
the EFE data for the structure a at PLR for the 
selected value R-e=45 nm. For comparison, the 
local EFE map plotted in the middle and bottom 
panels of Fig. 6 provide electrical field 
information of the structure d for the two 
polarizations of the electric field. A notable 
feature of Fig. 6 is that the maximum EFE is a 
factor of two larger when the electric field is 



oriented along the y-axis than when the field is 
polarized along the x-axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 6. (top) Visualization of the EFE for CS 
structure a and PLR=346 THz corresponding to 
R-e=45nm. The electric field is oriented along 
the y-axis. (middle) Same as in top for CS 
structure d and F=271 THz. The electric field is 
oriented along the x-axis. (bottom) Same as in 
middle for F=247 THz. The electric field is 
oriented along the y-axis. 
 

While the simulations so far have been for 
the four examples of CS nanostructures shown in 
Fig. 1, we now move on to consider the structure 
d in more detail. For that purpose, we consider 
two geometric parameters, denoted by r and p, 
whose significance is shown in Fig. 1. This is 
illustrated in Fig. 7 which presents the spectral 
characteristics of the impedance for a selected set 
of numerical values of the parameters listed in 
Table 2.  

Parameter d d1 d2 d3 d4 
R-e (nm)  45 45 45 45 45 
e (nm)  5 7 5 3 5 
r (nm)  26 18 18 34 34 
p (nm)  54 54 88 54 37 
r/r(d) 1.0 0.7 0.7 1.3 1.3 

  

 
Table 2. Values of r and p considered for the 
calculations leading to Figs. 7-8 (see Fig. 1 for 
their respective definition) 
 

Fig. 7 shows the relation between the 
geometric parameters r and p and the magnitude 
of the effective permittivity both in real and 
imaginary parts.  
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Figure 7. (a) Evolution of the spectral 

behavior of the real part of the effective 
permittivity for several variants of the d CS 
structure displayed in Fig. 1 and R-e=45 nm. The 
letters and corresponding lines (black: d, red: d1, 
green: d2, dark blue: d3, light blue: d4) refer to 
the d structure with values of r and p listed in 
Table 2. The electric field is directed along the x-
axis (Ex). (b) Same as in (a) for the imaginary 
part of the effective permittivity of the complex 
effective permittivity. (c) Same as in (a) for the 
modulus of the impedance. (d) Same as in (c) for 
the phase of the impedance. 



The next point to be discussed is the large 
magnitude of the EFE (Fig. 8).  
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Figure 8. (top) Visualization of the EFE for CS 
structure d1 and PLR=300.7 THz corresponding to R-
e=45nm. (d2) Same as in top for CS structure d2 and 
F=267.1 THz. (d3) Same as in top for structure d3 and 
F=232 THz. (d4) Same as in top for structure d4 and 
275.2THz  The electric field is oriented along the x-
axis. 

Based on the observed EFE increase of 
5.8≈  for the parallel versus perpendicular (to 

the CS nanoparticle axis) excitation polarization, 
it is possible to make an estimate of the spatial 
confinement of the optical energy in regions 
≈ 20 nm in linear dimension. Interestingly, in 
Fig. 8, we show the contrasting behavior of the 
magnitude of the EFE for a given electric field 
polarization and varying geometric parameters. 
Our finding points to the important fact that by 
adjusting the ratio r/r(d), the PLR can be tailored 
at other frequency range for a given CS structure. 
Comparing the values of r/r(d) in Table 2, which 
were chosen to be less (d1 and d2) or higher (d3 
and d4) than 1, we find that the maximum value 
of the EFE is larger in the former case. 

Based on the preceding results, one expects 
that this computational electromagnetic design 
approach for the spectral response of 
polarization-sensitive optical nanoantennas with 
respect to their geometric and modelling 
parameters may have interesting implications in 
both science and technology. However, in order 
for this potential to be realized in a practical 
manner, we need to better understand the precise 
role of materials and structures which can be 
chosen to enable the transmitter-receive pair 
concept to be effective without unwanted 
antenna coupling or cross-talk. This presents the 
possibility of a trade-off between PLR 
bandwidth and quality factor which is important 
in the context of plasmon sensor applications. 
Calculations of such effects are cumbersome and 
thus beyond the scope of this present work. 
Second, largely for reasons of calculational 
convenience, in the present paper, we focused 
only on 2D simulations. The methodology can be 
trivially extended to 3D configurations. Of 
course, if the goal is to control the EFE due to 
the plasmonic resonance, forms other than those 
considered here are possible. There is further 
room for optimization of the shape and size of 
the CS nanostructure, e.g. nanowires, nanostar.29 
Third, we end with a discussion of the broader 
implications of our findings in light of recent 
experiments. There are very recent sets of 
experiments which suggest that composite 
nanoparticle systems with controlled magnetic 
and plasmonic properties have great potentials in 
tissue imaging, drug delivery, and information 
storage. Using the finite-difference time-domain 
method, Hao et al. [11] showed that the 
plasmonic properties of a nanostar result from 



hybridization of plasmons of the core and tips of 
the nanoparticle. The nanostar core serves as a 
nanoscale antenna, dramatically increasing the 
excitation cross section and the electromagnetic 
field enhancements of the tip plasmons. Other 
authors found that the permittivity of the core 
material, not the shape of the core, is a major 
controlling factor in the PLR of CS nanoparticles 
[12]. On the basis of our investigation, we 
further conclude-in accordance with Ref. [12]-
that the specific concentration of the metallic 
phase must be considered as another important 
quantity for the tunability of the plasmonic 
properties of CS nanoparticles. A model system 
that has received particular recent attention is the 
combination of ferromagnetic and plasmonic 
nanomaterials whose properties allow 
developing new strategies for simultaneous 
cancer therapy and diagnostics. Recent advances 
in active plasmonic devices, i.e. for which the 
magnetic field can modulate the plasmon 
properties, also offer new opportunities for the 
design of plasmon-based telecommunications 
applications. 
 
4. Summary 
 
To summarize, we have conducted linear 
response calculations of the long-wavelength 
electromagnetic properties of resonant 
magnetoplasmonic nanostructures composed of 
CS nanoparticles with well-controlled 
dimensions. Using the model and the method 
presented here, the sensitivity of the simulated 
results have been analyzed for several key 
effects, namely, (i) the influence of geometric 
parameters characterizing the shape of the CS 
nanostructures and the orientation of the exciting 
electric field. We have shown that the physical 
properties of the CS nanostructures can be tuned 
by properly selecting dielectric and magnetic 
components with specific intrinsic material 
parameters. Resonant gyromagnetic and 
plasmonic effects result in significant MFE and 
EFE. We found nanolocalized THz fields 
corresponding to large EFE two orders of 
magnitude higher in amplitude than the 
excitation optical field. Further, by repeating 
similar numerical experiments for various 
anisotropic CS configurations, we found that 
these CS structures possess a broadband and 
polarization sensitive PLR which can be highly 
dependent on the shape of the nanostructure. 

Another outcome of the present study is that 
these CS structures are characterized by 
nanoscale field distributions. The latter property 
is important because they allow for manipulation 
at the nanoscale dimensions, i.e. they confine 
and guide optical energy over distances much 
smaller than the wavelength. This behavior is 
most prevalent for the structure d displayed in 
Fig. 1. (ii) A significant part of our focus in this 
paper was on a careful analysis of the effective 
characteristic impedance of these wave-guide 
based nanostructures that is playing a key role in 
the study of propagation losses. Although these 
results were obtained only for a very specific 
model (2D nanostructures corresponding to 
infinite cylinders in 3D), these proved to be 
useful in understanding the spectral response of 
nanoantennas. 
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