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Abstract: A successful development of an 
effective quench detection and protection method 
for a high temperature superconducting (HTS) 
coil based on a HTS coated conductor tape lays 
on a thorough understanding of its slowly 
propagating, 3D quench behavior. Toward this 
goal, a 3D micrometer scale FE thermo-
magnetostatic HTS  tape model composed of  
laminated high aspect ratio thin layers is 
developed. The physics from all layers are 
accounted for in real dimensions. The modeling 
problem of laminated high aspect ratio thin 
layers is tackled effectively by using a weak-
form, mixed-dimensional modeling approach 
through the use of interior boundaries. The 
interior boundaries also served as a bridge 
coupling the 2D and 3D physics. This also 
efficiently addresses the convergence problem in 
solving a FE model composed of domains with 
vastly different material properties. The model is 
validated numerically and experimentally; results 
show that it is capable of reproducing physical 
quench behavior accurately. 
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1. Introduction 
 

Commercially available high temperature 
superconducting (HTS) coated conductors (CCs) 
such as YBCO CCs are able to transport high 
critical current density (Jc) at high temperature 
above 40K or in very high magnetic field at 4.2 
K. They have been used to build 
superconducting motor and high field magnets. 
A typical HTS CC is composed of laminated thin 
layers. The HTS thin film, typically of 1 m 
thick, is grown on a relatively thick substrate and 
the HTS-substrate composite layer is surrounded 
by a stabilizer layer typically of copper. Silver 
and buffer thin films of about a few m thick are 

grown between the HTS and stabilizer and HTS 
and substrate, respectively. See Figure 1 and 
Figure 2 for a longitudinal and transverse cross-
sectional, schematic view of a surround-
stabilizer tape. When a local temperature rise 
created in a HTS coil is high enough to turn the 
superconductor from superconducting state to 
normal state,  the transport current flowing in the 
HTS layer redistributes to the stabilizer in which 
Joule heating occurs. In case the initial heated 
region is large enough to generate enough Joule 
heating to sustain a growing normal zone with 
increasing temperature, quench eventually 
happens.  Temperature margins of systems using 
HTS CCs are very high and therefore such 
systems are very stable. Even though quench-
inducing instabilities are unlikely, they remain a 
possibility and are difficult to detect. As the 
operating temperature increases, thermal 
diffusivity becomes very low leading to very 
slow normal zone propagation velocity (NZPV). 
As a result, conventional approaches to quench 
detection, which are typically based upon 
monitoring voltages and temperatures, are 
impractical and either new detection methods 
and/or ways to increase the NZPV are needed. 
Therefore, it is paramount to understand quench 
propagation at the micrometer-scale level. 

Here a 3D high-fidelity CC tape model 
composed of laminated, high aspect ratio layers 
is developed by using a mixed-dimensional 
modeling approach. The model takes into 
account all material layers in actual dimensions 
and is implemented in COMSOL. The main 
feature of the 3D mixed-dimensional approach is 
that the high aspect-ratio, superconducting thin 
film is approximated by 2D tangential equations 
and discretized with regular, second-order 
surface Lagrange finite elements. Corrective 
equations are added to compensate for the loss of 
accuracy due to the reduction in dimension. The 
coupling of the 2D physics to the 3D physics is 
done through the implementation of contact 
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resistance type interior boundary conditions 
which also model the silver layer and buffer 
layers analytically as normal fluxes. Another 
important benefit of this approach is that the 
interior boundary conditions simplify the 
computation of a model composed of different 
domains with vastly different material properties. 

 
2.  Mixed-dimensional 3D/2D Tape Model 

 
Only a few superconductivity models [1, 2] 
address the thin film modeling issues directly. 
However, they are difficult to be extended to this 
work, which involves the study of current 
distribution in a 3D domain consisting of 
laminated thin films with nonlinear physics.  
Here the goal is to investigate quench behavior 
of a CC transporting a direct current. Due to the 
spatial symmetrical/anti-symmetrical behavior of 
the thermal and current fields along the tape 
length and tape width, only a quarter of the tape 
is modeled, see Figure 1 and Figure 2. To initiate 
a quench, a heater is installed on the left-end top 
surface of the tape, as shown in Figure 1. 
 

 
Figure 1. Longitudinal cross-sectional sketch of a 
half-length surround-stabilizer tape. Also shown are 
the voltage and temperature taps used in experimental 
validation. The subscripts of the tap names denote the 
distance (in cm) from the left end (x=0).  
 

Figure 2. Transverse cross-sectional sketch of a 
surround-stabilizer tape. Only half of the tape width 
along the axis of symmetry is needed for modeling.  
 

In view of the slow normal zone propagation 
velocity, the slowly changing magnetic field is 

ignored by dropping the time derivative term of 
the magnetic potential, thereby decoupling the 
magnetic and electric potentials in Maxwell 
equations. The electrical equations for a full 3D 
tape model are then 

 ( ( ) ) 0T V     (1) 
 ( , )TJ E E  (2) 
 V E . (3) 

 For a tape composed of non-magnetic 
material, the magnetic equation is 
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and the thermal equation is 
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 ( )Q T  J E . (6) 
 Here V is the electric potential, T is the 
absolute temperature, J is the current density, E 
is the electric field, A is the magnetic vector 
potential and Q is the Joule heating. 
Here { , , }cu ni S , where “cu” represents the 
copper stabilizer, “ni” represents the nickel-alloy 
substrate and “S” represents the superconducting 
layer. The conductivity of the superconducting 
layer is derived from the nonlinear E-J  power 
law as 
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where the critical electric field Ec = 10-4 V/m and 
n is the E-J power law index. 0  is a small 
constant used to ease convergence. The field and 
temperature dependent critical current density Jc 
is   
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 Here Jco is the critical current density at the 
operating temperature To, Tc is the critical 
temperature and   is the power index in the J-T 
relation. B0 is a material dependent constant. The 
initial conditions are T(t=0) = To and V(t=0) = 0, 
which is enforced by null initial applied current. 
The boundary conditions are shown in Tables 1 
and 2 (refer to Figure 1), where Ja is the normal 



component of an applied current, and he and hb 
are the heat transfer coefficients for cooling at 
the end and base of the tape, respectively. The 
magnetic boundary condition for the magnetic 
air region is magnetic insulation. 
 

Table 4.1. Electrical boundary conditions  

Boundary Condition 

Left end Ground ( 0V  ) 

Right end Inflow current ( S aV J   n ) 

All others Insulation ( 0V  n ) 
 

Table 4.2. Thermal boundary conditions  

Boundary Condition 

Bottom  
Heat flux 

( 0( )bK T h T T   n ) 

Right end 
Heat flux 

( 0( )eK T h T T   n ) 

All others Insulation ( 0T  n ) 
 
 By first separating the normal component (z-
component) in the thermal equation (5) for the 
superconducting layer and then integrating the 
resulted equation over the superconducting layer 
thickness one obtains 
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where t is the tangential gradient operator and 

0
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d
T T dz

d
  . Here dS is the superconducting 

layer thickness and z = 0  and z = dS locate the 
bottom and top surfaces of the superconducting 
layer, denoted as  and  . In performing the 
integration, the parameters are considered 
functions independent of z. The boundary term 
on the LHS of equation (10) is equal to the 
difference of the normal heat fluxes on the upper 
and lower surfaces of the superconducting layer, 
which are approximated as the normal fluxes 
flowing across the silver and buffer layers, 
respectively. 

 The normal heat fluxes across the silver layer 
and buffer layers are modeled by thin-layer 
thermal contact resistance type identity pair 
boundary conditions. These boundary conditions 
are imposed on the identity boundary pairs 
between the lower surface of the top copper 
stabilizer and the top surface of the 
superconducting layer, and between the bottom 
surface of the superconducting layer and the top 
surface of the substrate.  The identity pair 
boundary conditions also couple the 2D thermal 
physics of the superconducting layer to the 3D 
physics of the copper stabilizer and substrate. By 
using these boundary conditions, the boundary 
terms in equation (10) can then be rewritten as 
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where F  and F  represent the normal heat 
fluxes flowing across the top and bottom 
surfaces of the superconducting layer. The 
subscripts a and b represent the silver layer and 
buffer layers, da and db  represent the thicknesses 
of the silver layer and buffer layers, cuT   and cu

  
represent the temperature and boundary on the 
lower surface of the top stabilizer while niT



 
and 

ni



 
 are on the upper surface of the substrate, 

and T  and T   denote the temperatures on the 
upper and lower surfaces of the superconducting 
layer. As a result, the tangential 2D thermal 
equation (10) is approximated in weak boundary 
form as 
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Due to the 2D approximation of the 
superconducting layer, T

  and T
  are actually 

the same and equal to T . Numerical simulations 
show that the temperature gradient which 



appears in a full 3D simulation is an important 
factor affecting simulation accuracy. To account 
for the temperature gradient within the 
superconducting, using ( ) 2T T T    as an 
approximation of T , and equation (13) as a hint, 
the approximations of the higher temperature T   
and lower temperature T   are written as 

 2T T T    (14) 
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This thermal correction reproduces the 
temperature gradient across the thickness of a 3D 
superconducting layer and greatly improves the 
accuracy of the reduced dimensional 
approximation. Section 3 will give some details 
about the simulation accuracies and errors. 
 To further account for the in-plane thermal 
physics along the silver layer and buffer layers, 
surface heat equations plus heat sources are 
imposed, in addition to the normal heat fluxes 
F  and F  , as interior boundary conditions on 
the top copper stabilizer lower surface and the 
substrate upper surface:   
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 The square bracketed terms are the normal 
and tangential Joule heating on the silver layer 
and buffer layers. Here, cuV   and niV

  are the 
electric potential on the top stabilizer lower 
surface and substrate upper surface, and V   and 
V  are the electric potentials on the upper and 
lower surfaces of the superconducting layer. 

 A 2D tangential electrical equation for the 
superconducting layer is obtained using the same 
approach used to derive the 2D tangential 
thermal equation. The planar current flowing 
along the silver layer and buffer layers is 
neglected and the currents flowing across the 
thickness of these layers in the normal direction 
are approximated by contact resistance type 
identity pair boundary conditions similar to 
equations (11) and (12) as: 
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Analogous to the derivation of the tangential 
thermal equation, a 2D tangential electrical 
equation results: 
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where 
0

1 y
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d
V V dz

d
  . Due to the 2D 

approximation of the superconducting layer, 
however, the electric potentials V   and V

  are 

identical and equal to V . In contrast, there is a 
potential differential between the top and bottom 
surfaces in 3D superconducting layers. 
Physically, the potentials across the silver layer 
and buffer layers must match over the normal 
zone region since there is minimal or zero 
current flowing across the highly resistive 
normal zone of the superconducting layer. Using 
a full 3D simulation result as a hint, a potential 
difference is created on the 2D superconducting 
layer over the normal zone through  
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 This potential correction eliminates any 
otherwise artificial current flowing over the 
normal zone. The cut-off value of 10-4 is chosen 



to be larger than but close to the normal state 
conductivity of the superconductor. 
 The magnetic field generated by the current 
flowing in the 3D domains such as the stabilizer 
and the substrate is accounted for by the 
magnetic potential equation (4). The magnetic 
field generated by the current flowing in the 
superconducting layer is taken into account by 
using the surface current type identity pair 
boundary condition imposed on the identity pair 
pairing the top stabilizer lower surface and the 
substrate top surface. The generated magnetic 
field is coupled to the superconducting layer via 
the ( , )cJ T B  equation (8). 
 
3. Validation and Results  
 
 Analytical solution for a full nonlinear 
superconducting tape model without 
simplification is nearly impossible to obtain. 
Thus, the mixed-dimensional model, denoted 
hereafter as 3D/2D  model, is validated by 
numerical and experimental validations. 
Experimental validation, though the most 
trustable way to verify a model, is limited to the 
observation of measurable quantities such as 
voltage and temperature on the tape surface. 
Numerical validation based on an equivalent 3D 
computational model allows the observation of 
the inner details within a tape model. 
 For numerical validation, short 3D/2D and 
partial- and full-3D tape models of 5 mm long 
and 0.5 mm wide are used. A full-3D model 
meshes all layers including the superconducting, 
silver and buffer layers in 3D while a partial-3D 
model approximates the silver and buffer layers 
with interior boundary conditions. Figure 3 
illustrates the impact of the thermal corrective 
equations (14) and (15) on the temperature 
distribution and accuracy of the 3D/2D model. 
Figure 3(a) shows a snapshot of the temperature 
distribution from a partial-3D model. Figure 3(b) 
is from a 3D/2D model with thermal correction, 
and Figure 3(c) is the same 3D/2D model but 
without the thermal correction. All three cases 
are taken at the same time at t = 5 x 10-4 s during 
quenches. As can be seen by comparing Figure 
3(a) and 3(b), the thermal correction reproduced 
the temperature gradient across the 3D 
superconductor (YBCO) layer of the partial-3D 
model in the 3D/2D model. It also greatly 
improves the accuracies in the position of the Tc 

front and the temperature. See the caption in 
Figure 3 for the exact values of the position, 
temperature and error. In contrast, the accuracies 
of the 3D/2D model without the thermal 
correction, as shown in Figure 3(c), are poor. 
The thermal and potential corrections on the 
superconducting layer significantly improve the 
accuracy of the 3D/2D model. The maximum 
numerical error is reduced from 15.8 % without 
corrections to 0.7 % with corrections, as 
compared to the corresponding partial-3D model 
in NZPV and peak temperature. Implementing 
all the thermal and electrical equations from 
section 2 reduces the maximum numerical error 
of the 3D/2D models from 26% to less than 
3.8%, as compared to the results generated by a 
corresponding full-3D model. 
 

 
Figure 3. Snapshots of T(x, z) during a quench in a 
surround-stabilizer tape. (a) A partial-3D tape model. 
The Tc front at the copper-superconductor (YBCO) 
interface is located at x = 1.76 mm and the peak 
temperature Tmax = 122.2 K. (b) A mixed-dimensional 
3D/2D model with thermal correction which 
reproduces the temperature gradient across the 
superconductor layer. The Tc front is located at x = 
1.77 mm (error = 0.4%) and Tmax = 121.8 K (error = 
0.3%). (c) The same mixed-dimensional 3D/2D model 
as in (b) but without the thermal correction. The Tc 
front is located at x = 1.52 mm (error = 13.7 %) and 
Tmax = 106.1 K (error = 13.2%).  
 
 Besides NZPV and temperature, comparisons 
of other quantities are also used to gauge the 
accuracy of the 3D/2D model as compared to its 
full 3D model counterpart. As an example, 
Figure 4 compares the Joule heating during a 
quench versus longitudinal length profiles 



obtained from a 3D/2D tape, as shown in Figure 
4(a), and a full-3D counterpart, as shown in 
Figure 4(b). Graphs of the same legend and color 
represent the Joule heating measured from the 
same particular layer in both tapes. As can be 
seen, the two profiles match each other very 
well. Note that during a quench, most of the 
Joule heating occurs at the top copper stabilizer 
(Q_cu, brown lines) over the normal zone where 
the Joule heating on the superconducting layer 
(Q_y, red lines) drops sharply to near zero. 

 

 
Figure 4. Comparison of Joule heating (in surface and 
volume densities) versus longitudinal length profiles 
obtained from 3D/2D (a) and full-3D models (b). Red 
lines (Q_y) are Joule heating measured from the 
superconducting layer. Brown lines (Q_cu) are from 
top copper stabilizer, black lines (Q_ni) are from 
substrate, blue lines (Q_s) are from silver layer while 
green lines (Q_b) are from buffer layer.  

 
 The experimental validation uses readily 
available experimental results reported in [3]. A 
90 mm x 2 mm quarter-size 3D/2D tape model 
as shown schematically in Figure 1 is used in 
simulation. Temperature-dependent material 
properties are obtained from the COMSOL 
material library, from in-house measurements 
and published data. There are a number of 

unknown parameters needed to be estimated in 
the simulations. The main unknown parameters 
are the thickness of the side stabilizer, the power 
indices n, the heat transfer coefficients at the 
base and end of the tape, the effective thermal 
conductivity of the heater, and thermal and 
electrical conductivities of the buffer layers. A 
possible set of temperature independent values of 
the unknown parameters are first chosen within 
the limits of available material property data and 
then refined by comparing the simulation results 
to the experimental results. This is repeated until 
the NZPVs and the voltage and temperature 
profiles generated from the simulations approach 
the experimental results. 
 Figure 5 shows the NZPVs from the 
simulations and experimental data corresponding 
to different Ja/Jco ratios under different operating 
temperatures. In these simulations, magnetic 
field calculation is not considered by excluding 
equation (4) and setting ( , ) ( )c cJ T J TB . The 
NZPVs from the simulations using the 3D/2D 
tape models are in good agreement with the 
experimental data; all errors are within 9%. 

 
Figure 5. Comparison of NZPVs between 
experimental results from [3] (solid lines) and 
simulation results (dashed lines) on a 90 mm long 
half-length surround-stabilizer tape. The horizontal 
axis represents the ratio of the applied current density 
to critical current density at the operating temperature. 
Graphs from top to bottom correspond to cases with 
operating temperatures of 40 K, 50 K, 60 K, 70 K and 
77 K. 
 
 Figure 6 gives another example showing that 
the 3D/2D model is capable of predicting 
accurately the physical quench behavior of a real 
case CC tape. Figure 6(a) shows the voltage 
versus time profile measured from experimental 
tape corresponding to the J/Jc = 0.5 and To = 70 



K case in Figure 5. Figure 6(b) shows the same 
profile obtained from a 3D/2D model. Observe 
that the two profiles match each other well. The 
nonlinear segment of a voltage (difference) curve 
reflects the occurrence of current sharing in the 
region bounded by the two voltage taps. Within 
the current sharing region, the superconductor 
becomes resistivity and current redistributes 
from the superconducting layer to the stabilizer. 
The nearly linear segment of the curve signifies 
that the current is flowing completely on the 
stabilizer.  More details about the 3D/2D model 
and its validation results can be found in [4]. 
 

 
Figure 6.  (a) Voltage versus time obtained 
experimentally as reported in [3]. In this case, J/Jc = 
0.5 and To = 70 K. The voltage V3.5-2.5 is the difference 
between the voltages measured at the voltage taps V3.5 
and  V2.5 as defined in Figure 1. The voltage tap V-0.5 
used for the voltage differential V0.5-(-0.5)  is located at x 
= -0.5 cm on the surface of the experimental tape. 
Note that the heater pulse starts at t = 0.85 s, so the 
time scale is shifted to match the time-axis in (b). (b) 
Voltage versus time obtained from simulations of a 90 
mm x 2 mm quarter-size surround-stabilizer tape, 
corresponding to the same conditions and voltage tap 
definitions as in (a).  

4. Conclusions 
 
 The 3D/2D model allows the study of 
micrometer-scale quench propagation details 
within a HTS CC tape. The mixed-dimensional 
modeling approach renders the FE meshing 
independent of the thicknesses of the laminated 
thin layers. This effectively addresses the 
problematic high aspect ratio FE modeling 
issues. The 3D/2D model saves more than three 
times FE degrees of freedom and computes 
efficiently at a speed at least eight times faster 
than its full-3D counterparts. This speed 
efficiency is due partly to the reduction in FE 
unknowns and partly to the decomposition of the 
numerical domain into separated, easier-to-
compute domains of vastly different material 
properties by the interior boundary conditions. 
 Validation results show that a laboratory size 
3D/2D model is capable of reproducing 
accurately the detailed physical quench 
phenomena observed experimentally. 
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