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This study aims to support the design and 
development of a rocket-borne particle collector
through COMSOL Multiphysics® and its 
performance characterization.
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In this study, simulations of supersonic flow fields by COMSOL 
Multiphysics® are used to design and develop an impaction-
based particle collector for sampling nanometer-sized aerosols 
in the mesosphere, at 85 km altitude, mounted on a sounding 
rocket.

The goal is to collect the aerosols for physico-chemical analyses 
to study high-altitude processes such as the meteoric ablation 
and their potential effects on noctilucent cloud formation.

The simulations focus on the analyses of the supersonic flow 
fields, the shockwave localizations, and the boundary layer 
thickness around the rocket payload.

With the final collector design, simulations of particle 
trajectories characterize the collector’s performance, where 
impactions onto designated collector surfaces are highly 
probable.
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Results

FIGURE 5: a) Number of impacted particles. b) 
Sampling efficiency with regard to the particle 
number concentration.
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FIGURE 1: Sounding rocket (adapted from [1]) and instrument 
module, which is implemented into the COMSOL® model. 

a)

FIGURE 3: a)+b) Flow field around the instrument module. c) Cut 
lines. d) Velocity values depict the boundary layer thickness. 
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Mathematical model

𝜌: density
𝑢: velocity
𝑝: pressure
Ԧ𝑥: particle position

𝜇: dynamic viscosity
Ԧ𝑓: body force
𝑒: internal energy
𝑘𝐵: Boltzmann constant

𝑐𝑣: specific heat capacity
𝑇: temperature
𝑅𝑠: specific gas constant
𝑚𝑝: particle mass

𝐶𝐶: Cunningham slip corrector
𝑑𝑝: particle diameter

𝑘: thermal conductivity
𝐈: identity matrix

𝑚𝑝
𝑑2 റ𝑥

𝑑𝑡2
= Ԧ𝜉

6𝜋µk𝐵𝑇𝑑𝑝

∆𝑡𝐶𝑐
+

3𝜋𝜇𝑑𝑝𝑢𝑟

𝐶𝑐
Brownian force Stokes drag force

equation of particle motion
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flight attitude: 0°

b) flight attitude: 0°

Methodology
Mesh generation
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FIGURE 2: Generated mesh with refinement 
around the collector surface for the fluid flow 
simulations. 
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FIGURE 4: a) Determining effective particle inlet starting positions by back-
trajectories. b) Ensemble of particle trajectories. c) Impacted particles on a 
collector surface. 

direction of
flow

direction of
flow

a) b)

c)

Efficiency of a Supersonic 
Rocket Aerosol Collector

instrument module

[1] Naumann, K., et al. "Design of a hovering sounding
rocket stage for measurements in the high
atmosphere." (2020)

Effective particle starting positions and particle impacts

compressible Navier-Stokes equations
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