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Abstract 

Microarchitectured materials are generally made of different compounds bound at the microscopic level using a 

periodic pattern. This results in a macroscopic material with new properties arising from each of the individual 

compound properties and the way the microarchitecture binds them. The periodic microstructure can then be 

optimized to obtain specific macroscopic material properties, but attention must be paid to the microstructure 

response, such as high thermal gradients in heat transfers or mechanical stresses in structural mechanics. Using a 

finite element analysis to forecast such behaviors is often computationally challenging due to the abundance of 

geometrical details, leading to a large number of degrees of freedom to solve for. Modelers must then rely on more 

sophisticated numerical methods. This paper studies the use of the periodic homogenization method in heat 

transfers and solid mechanics. This method has the advantage to be built upon a well-established mathematical 

basis. The initial problem is reformulated into two-scale finite element problem. At the microstructure-scale, 

unitary stimulations of the material are performed in order to characterize homogenized properties of the material. 

At the part-scale, homogenized temperature or displacement fields are solved. Each of these steps requires to solve 

far less degrees of freedom than the initial problem. Ultimately, both results are combined by relocation in order 

to get an accurate prediction of the local temperature, conductive fluxes, displacement and mechanical stresses. 

Keywords: composite materials, equivalent medium, multiscale approach, homogenization, relocation, thermal 

conduction, elasticity, macroscopic and microscopic medium, heterogeneous medium, unit cell.

1   Introduction 

Microarchitectured materials are generally made of 

different compounds bound at the microscopic level 

using a periodic pattern, resulting in a macroscopic 

material with new properties. Modelling such 

materials using a finite element analysis is 

computationally unaffordable, because the 

abundance of geometrical details results in a very 

large number of degrees of freedom. The modeler 

must then rely on more sophisticated methods such 

as the periodic homogenization method. 

 The periodic homogenization method is a 

mathematical method to cast PDEs with periodic and 

rapidly varying coefficients into a set of microscopic 

and macroscopic equations [1] [2] [3]. The solutions 

of such equations are far easier to solve than the 

primal equations, and their combination results in 

very accurate approximations of the primal solution 

[4] [5]. For heat transfer in solids and solid 

mechanics, this method can theoretically predict 

with high accuracy within the microstructure: hot 

spots, thermal gradients, strains and stresses. While 

being mathematically well-established, this method 

requires a rather careful implementation to take 

advantage of its power. 

This paper studies the COMSOL implementation 

of the periodic homogenization method for heat 

transfers and solid mechanics, two physics 

commonly used by engineers. For solid mechanics, 

elasticity properties can be homogenized by 

COMSOL using the Cell Periodicity feature [6]. 

Beyond homogenizing heat transfer in solids and 

mechanical properties, the ambition of this work is 

going further by also relocating variables and their 

gradients, i.e. providing an accurate estimation of 

temperature, displacement, heat fluxes, and 

mechanical stresses at the microscale. 

2   Theory 

a. Basis Problems 

The goal is to predict the conductive thermal 

equilibrium and the mechanical equilibrium of a 

macrostructure made of a microarchitectured 

material. Figure 1 illustrates an example of geometry 

further used for heat transfers. The microstructure is 

periodic and can be described by a unit cell  (e.g. 

Figure 1 – right), which is repeated a large number 

of times within the macrostructure. Each component 

of the unit cell has its own physical properties. 

 

Figure 1. Example of a macrostructure (left) made of a 

microachitectured material whose the unit cell (right) may 

be repeated more than tens of thousands times. 

The thermal equilibrium within the macrostructure is 

described by the steady-state heat equation: 

−𝛁 ⋅ (𝐊 𝛁𝑇) = 𝑞, 
 

(1) 
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where 𝑇 is the temperature, 𝐊 the conductivity 

matrix, and 𝑞 an external heat source. The 

mechanical equilibrium solves: 

−𝛁 ⋅ (𝐂 ∶ 𝛜) = 𝑭, 

𝛜 =
1

2
[𝛁𝒖 + (𝛁𝒖)T], 

 

(2) 

where 𝒖 is the displacement field, 𝛜 the linear strain 

tensor, 𝐂 the elasticity tensor, and 𝑭 external forces. 

Both of these equations require to be closed using 

appropriate boundary conditions. The particularity 

of Eq. 1-2 is that 𝐊 and 𝐂 vary rapidly in space 

because of the microscopic structure. 

 In the periodic homogenization framework, the 

microscale is described in a normalized frame: the 

unit cell is described by a cube of 1 m-length. At the 

macroscale, the actual size of the unit cell is called 𝜀, 

allowing to describe the material properties as 1-

periodic functions as follows: 

𝐊 = 𝐊(𝒙/ε), 

𝐂 = 𝐂(𝒙/ε), 
 

(3) 

where 𝒙 is the material coordinate at the macroscale. 

Note that the theory can be applied to non-cubic unit 

cells (e.g. Figure 1 – right). 

 The periodic homogenization theory applies 

under linearity hypotheses: 𝐊, 𝑞, 𝐂 and 𝑭 are not 

function of 𝑇 and 𝒖. 

b. Homogenization 

Homogenization is the first step of the method. It 

consists in numerically submitting the 

microstructure to unitary solicitations in order to 

deduce homogenized properties and get the 

macroscopic behavior of the macrostructure. 

 Concerning heat transfer in solids, the unit cell is 

submitted to three unitary thermal gradients. The 

following heat equations are solved in 𝜔𝑘 within the 

unit cell: 

−𝛁 ⋅ [𝐊 𝛁𝜔𝑘] = 𝛁 ⋅ [𝐊 𝒆𝑘], 

𝒆1 = (1,0,0), 𝑒2 = (0,1,0), 𝑒3 = (0,0,1), 

𝑘 = 1, 2, 3, 
 

(4) 

where 𝒆𝑘 is the unitary thermal solicitation. These 

equations are closed with periodic boundary 

conditions and imposing mean value of 𝜔𝑘 as zero. 

The homogenized conductivity matrix 𝐊𝒉 is: 

𝐊𝒉 = ∫ 𝐊 [𝐈 + (𝛁𝜔1 𝛁𝜔2 𝛁𝜔3)] d𝒙
cell

, 
  

(5) 

where 𝐈 designates the identity matrix. The apparent 

temperature 𝑇0 of the macrostructure can then be 

solved by replacing 𝐊 by 𝐊𝒉 in Eq. 1 and its 

boundary conditions. 

 Concerning solid mechanics, the unit cell is 

submitted to unitary strains. There are nine unitary 

displacements 𝜸𝑗𝑘 to solve within the unit cell: 

−𝛁 ⋅ [𝐂 ∶ 𝛜𝑗𝑘] = 𝛁 ⋅ [𝐂 ∶ 𝒆𝑗𝑘], 

𝛜𝑗𝑘 =
1

2
[𝛁𝜸𝑗𝑘 + (𝛁𝜸𝑗𝑘)

T
], 

𝒆𝑗𝑘 = (
0 ⋯ 0
⋮ 1 ⋮
0 ⋯ 0

) , 1 at 𝑗𝑘-th component, 

𝑗 = 1, 2, 3, 

𝑘 = 𝑗, ⋯ , 3, 
 

(6) 

where 𝒆𝑗𝑘 is the unitary strain. These equations are 

closed with periodic boundary conditions and 

imposing mean value of 𝜸𝑗𝑘 as zero. In practice, the 

number of displacements to solve can be reduced to 

six by using the symmetry 𝜸𝑘𝑗 = 𝜸𝑗𝑘. The 

homogenized elasticity tensor 𝐂𝒉 is: 

𝐂𝒉𝑙𝑚𝑗𝑘
= ∫ 𝐂𝑙𝑚𝑗𝑘 + (𝐂 ∶ 𝛜𝑗𝑘)

𝑙𝑚
 d𝒙

cell
. 

  

(7) 

The apparent displacement field 𝒖𝟎 of the 

macrostructure can then be solved by replacing 𝐂 by 

𝐂𝒉 in Eq. 2 and its boundary conditions. 

c. Relocation 

Once unitary microscopic temperature fields 𝜔𝑘 

(resp. displacement fields 𝜸𝑗𝑘) and macroscopic 

temperature field 𝑇0 (resp. displacement field 𝒖𝟎) are 

solved, they can be combined to obtain accurate 

microscopic values for the variables and their 

gradients. This is the relocation. 

 Concerning heat transfer in solids, the relocated 

temperature 𝑇𝑟 is obtained as follows: 

𝑇𝑟(𝒙) = 𝑇0(𝒙) + 𝜀 ∑
𝜕𝑇0

𝜕𝑥𝑗
(𝒙)𝑗  𝜔𝑗(𝒙/𝜀). 

 

(8) 

Then, the gradient of 𝑇𝑟 can be used to predict 

accurate values for the temperature gradient and 

conductive fluxes within the microstructure. 

 Concerning solid mechanics, the relocated 

displacement field 𝒖𝒓 is obtained as follows: 

𝒖𝒓(𝒙) = 𝒖𝟎(𝒙) + 𝜀 ∑
𝜕𝒖𝟎𝑗

𝜕𝒙𝑘
𝑗,𝑘 (𝒙) 𝜸𝑗𝑘(𝒙/ε). 

 

(9) 

Here again, the gradient of 𝒖𝒓 can be used to predict 

accurate values for strains and stresses within the 

microstructure. 

d. Quality of the Approximation 

Mathematical analyses of the method have 

demonstrated its accuracy in multiple configurations 

(boundary condition combinations), both in heat 

transfers and solid mechanics [2]  [3]  [4] [5]. The 

accuracy results are expressed using norms (norms 
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of Sobolev spaces 𝐿2 and 𝐻1), and are in fact 

convergence results of the approximate solutions to 

the solution of the primal equation when the actual 

size of the unit cell 𝜀 tends to zero: 

‖𝑇 − 𝑇0‖𝐿2 ≤ 𝐶 ⋅ 𝜀, 

‖𝑇 − 𝑇𝑟‖𝐻1 ≤ 𝐶 ⋅ √𝜀, 

‖𝒖 − 𝒖𝟎‖𝐿2 ≤ 𝐶 ⋅ 𝜀, 

‖𝒖 − 𝒖𝒓‖𝐻1 ≤ 𝐶 ⋅ √𝜀. 

(10) 

where 𝐶 stands for a constant. In essence, these 

results mean that accuracy increases as the unit cell 

is small compared to the macrostructure size. In 

order to predict hot spots and displacements, 𝑇0 and 

𝒖𝟎 may suffice, while using 𝑇𝑟 and 𝒖𝒓 are necessary 

to predict accurately the thermal fluxes and 

mechanical stresses within the microstructure. 

3   COMSOL Implementation 

a. Model Overview 

In this section, the COMSOL’s features used in the 

implementation are in italic. The implementation is 

architectured around two components: the first one 

to study the behavior of the unit cell, and the second 

one to study the macrostructure. 

 For heat transfers, Eq. 4 is implemented using the 

Coefficients Form PDE physics. This physics allows 

a great implementation flexibility, and particularly, 

it eases the implementation of the source term of Eq. 

4 by allowing adding natively a source term in the 

divergent. The zero mean condition is obtained by 

adding one Global Equations introducing a new 

degree of freedom fixing 𝜔𝑘 at an arbitrary point of 

the unit cell. For solid mechanics, Eq. 6 is 

implemented using the Solid Mechanics physics. 

This time, the source terms are implemented in weak 

form. This task must be completed with care, and the 

ability to automatize the formulae generation using 

Methods within the Application Builder is extremely 

helpful. The unit cell is fixed (𝜸𝑗𝑘 = 0) at an 

arbitrary point of the unit cell, and the zero mean 

condition is obtained at post-treatment by 

subtracting to the solution its mean. 

Once unitary microscopic contributions are 

solved, the homogeneous properties (Eq. 5 and Eq. 

7) are computed and stored as new variables that will 

be used for the macroscopic computation. 

Concerning the relocation formulae (Eq. 8-9), 

they are implemented as Variables, since they only 

combine already solved variables. Here again, using 

Methods is really helpful. For solid mechanics in 3D, 

hundreds of variables may be needed to perform 

relocation of displacements, strains and stresses. 

Thus, COMSOL’s flexibility allows to 

implement such multiscale approach. 

b. Numerical Aspects 

The numerical implementation of this method 

requires specific care. 

 Because of the periodicity boundary conditions 

of Eq. 4 and Eq. 6, it is strongly recommended to 

build a mesh of the unit cell such that nodes and 

edges of opposing faces coincide. Such mesh avoids 

local artifacts in the unitary microscopic variables. 

 When solving 𝑇0 or 𝒖𝟎, the order of elements 

must be carefully chosen, depending on the nature of 

the analysis. When only 𝑇𝑟 or 𝒖𝒓 are needed, it 

suffices to use 𝑃1-elements, while when gradients 

and their products (fluxes, strains, stresses…) are 

needed, 𝑃2 or quadratic serendipity elements must 

be used, as deriving Eq. 8 (resp. Eq. 9) makes appear 

second derivatives of 𝑇0 (resp. 𝒖𝟎). 

 Once discretized, microscopic and macroscopic 

equations are linear and a reasonable number of 

degrees of freedom are solved, generally allowing to 

use direct linear solvers. 

 In order to verify the COMSOL implementation 

of the method, Eq. 1-2 will be solved directly without 

the method. Even by using geometries made of a 

limited number of repetitions of the unit cell, 

millions of degrees of freedom may be solved, 

requiring using iterative linear solvers. 

4   Results and Discussion 

a. Heat Transfers 

The method is applied to the case illustrated in 

Figure 1 for heat transfer in solids, which models the 

heat dissipation of a hypothetic carbon fiber intake 

manifold. The unit cell is a carbon fiber textile 

(Figure 1 – right), where fibers (dark) have a high 

isotropic conductivity (40 W/m/K) and the matrix 

(light) has a low isotropic conductivity (4 W/m/K). 

Homogenization of this microstructure results in an 

anisotropic conductivity: 

𝐊𝒉 = (
10 0 0
0 10 0
0 0 6

)  W/m/K. 

 

(11) 

This result goes beyond the rule of mixtures and the 

inverse rule of mixtures, which estimate an isotropic 

conductivity ranging from 6 W/m/K to 13 W/m/K. 

Using 𝐊𝒉, the apparent temperature 𝑇0 is solved and 

illustrated in Figure 2. 

 The maximal apparent thermal gradient 𝛁𝑇0 is 

compared to a measurement of the relocated thermal 

gradient 𝛁𝑇𝑟 at some point 𝒙0 of the geometry: 

max ‖𝛁𝑇0‖ = 1.02 × 104 K/m, 

𝛁𝑇𝑟(𝒙0) = 2.98 × 104 K/m. 
 

(12) 
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High thermal gradients may be correlated with fiber 

delamination, and Eq. 12 show that the actual 

gradient may be largely higher than the apparent one. 

 

Figure 2. Apparent temperature 𝑇0 at the surface of the 

macrostructure. 

b. Solid Mechanics 

 

Figure 3. Macrostructure (left) used as test-case for solid 

mechanics, made of a microachitectured material whose 

the unit cell (right) is repeted up to tens of times. 

In solid mechanics, the method is applied on a non-

trivial test case to estimate numerically its accuracy 

and verify its implementation. The macrostructure 

(Figure 3 – left) is built upon repetitions of a unit cell 

(Figure 3 – right) made of fibers (dark) with high 

Young’s modulus and a matrix (light) with low 

Young’s modulus. Different scenarios are evaluated: 

one of the six faces of the macrostructure is fixed, 

and either the opposite face is pulled (traction), or 

adjacent faces are sheared (shearing). Six scenarios 

are evaluated in total. 

 

Figure 4. Reference (a) and periodic homogenization 

method (b) von Mises constraint results obtained in a 

shearing scenario, on a cut plane. 

 Figure 4 shows results of von Mises constraints 

obtained by solving directly Eq. 2 with 4 × 4 × 4 

repetitions of the unit cell (a), and by using the 

periodic homogenization method Eq. 6-7, 9 (b). 

Even with a low number of repetitions of the unit 

cell, the method predicts accurately the locations and 

the magnitudes of high constraint spots. 

 

Figure 5. Evolution of the 𝐻1-error of the implementation 

for each scenario when 𝜀 → 0. 

 The implementation of the method is 

quantitatively tested by evaluating the left-hand 

sides of Eq. 10. Figure 5 shows the evolution of the 

𝐻1-error of the numerical implementation for each 

scenario, when 𝜀 → 0. The graphs are in log-log 

scale, allowing to compare the numerical slope to the 

theoretical slope (Eq. 10: slope = 1/2), which is 

actually attained. This result shows that the 

implementation of the method is correct, as it is 

capable to predict with accuracy displacement fields, 

strains and constraints. 

Table 1. Number of degrees of freedom and computation 

time of the direct method and the periodic homogenization 

method, with 4 × 4 × 4 repetitions of the unit cell. 

Method #DOF Comp. time (min) 

Direct (Eq. 2) 1.8 M 33 
   

Micro Eq. 6-7 6 × 37 K 2 

Macro Eq. 7 → 2 80 K 0.5 

Homogenization 0.3 M 2.5 

The computational cost of solving directly Eq. 2 

is compared to the periodic homogenization method 

in Table 1. The periodic homogenization method 

requires far less degrees of freedom to solve for 

simultaneously and a far below computation time 

compared to the direct method, even with a low 

number of repetitions of the unit cell. The 

computation cost of the periodic homogenization 

method does not depend on 𝜀. This means that the 

speedup should be far greater with smaller values of 

𝜀. The method thus allows for studying cases where 

a direct computation is impossible. 

5   Conclusions 

The goal of this work is to predict heat transfer in 

solids and solid mechanics of parts made of 

microarchitectured materials using the periodic 

homogenization. The method reformulates the 

solution of PDEs having rapidly varying periodic 

coefficients as a combination of macroscale and 

microscale solutions via the steps of homogenization 

and relocation. This multiscale approach is 
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implemented within COMSOL Multiphysics® 

thanks to its great flexibility. 

Numerical results in heat transfer show the 

ability of the method to predict anisotropies from a 

combination of isotropic materials, and the 

importance of relocation: apparent (macroscopic) 

variables may hide huge variations within the 

microarchitecture. The method is also applied to 

solid mechanics, showing its accuracy to relocate 

stresses within the microstructure. Numerical 

convergence results are obtained by comparing 

results of the method with a solution obtained by 

directly solving the primal equation, showing both 

the correctness of the implementation and the gain in 

terms of computational costs. 

 The method is very general and can be directly 

applied to industrial cases to predict and optimize 

microarchitectures. Nonlinearities still require 

specific care, and the method may need to be 

customized to specific purposes. Future works 

include handling more physics, in particular fluid 

dynamics in porous media. 
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