

Fluxgate Virtual Sensor

Atef LEKDIM 10/26/2023

Agenda

- Introduction
- Model Builder
- Livelink with Matlab
- Results
- Conclusion

Introduction

All applications that require high precision

Automotive:

-RCDs for On/Out Board Chargers (CDTs , CDSR)

Health equipments:

-MRI scanners (ITL , ...)

- Others

Model Builder

Magnetic field physic

Anisotropy included along the radius

Model Builder

- Electrical circuit and Events modules
 - Saturate the magnetic material both sides (fluxgate principale)

Control of transistors

Model Builder

General Form PDE module

Basic magnetic model

$$H_{\text{dyn}(B)} = H_{stat(B)} + \gamma \times \frac{dB}{dt}$$

LiveLink with Matlab

- Basic livelink Matlab script steps
 - Loading the COMSOL model
 - Matlab main loop
 - Setting model parameters
 - Run the simulation
 - Extraction of simulation data
 - Post processing

```
Virtual_fluxgate_sensor.m × +
32
        %********************************loading of the COMSOL model*
33
34
        model=mphopen('Virtual fluxgate sensor');
35
        %mphlaunch(model)
36
        i=1;ii=1;iii=1;
37
        for ii=1:length(Ileak)
38
        for iii=1:length(ANGLE)
        for i=1:length(I1)
39
        45
         model.param.set('Ileak', [num2str(Ileak(ii)) '[A]']);
         model.param.set('Irelay_0', [num2str(Irelay_0) '[A]']);
         model.param.set('ANGLE', [num2str(ANGLE(iii)) '[A]']);
47
48
         model.param.set('I1', [num2str(I1(i)) '[A]']);
         model.param.set('I2', [num2str(I2(i)) '[A]']);
49
         model.param.set('I3', [num2str(I3(i)) '[A]']);
50
        % model.param.set('I0', [num2str(I0) '[A]']);
51
52
         model.param.set('Ns', [num2str(Ns) '[1]']);
53
        % model.param.set('gamma', [num2str(gamma) '[1]']);
57
58
        mphgeom(model, 'geom1', 'facealpha', 0.5)
       59
        model.result.table('tbl2').clearTableData
60
61
62
        model.study('std1').run
63
        temps_simul(i,1)=toc/60
       64
70
        MMM=mphtable(model, 'tbl2');
71
        MM=MMM.data;
72
        %model.result.table('tbl2').save([PathName,'With all shieldings Ileak=',num2s
73
74
        mphplot(model.'pg36'.'rangenum'.12)
        75
        Measurements(:,iii+(ii-1)*2)=Sensor PostProcess function(MM,Long moy,Cross Se
76
77
        %save(strcat(PathName, strtok('Extraction parametres tripahse Ileak0A With all
78
        clear MMM MM
79
        end
80
        end
81
```


Results

Results over simulation time

Results

Matlab Post

Processing

results

Sensor electrical results with respect to relay orientation

The digital channel is highly sensitive to electromagnetic pollutions

Conclusion

The realised virtual sensor is useful for

- continuous improvement,
- simulating extreme conditions that can't be easily set in real life,
- simulating customer environment for better integration of the sensor

Next steps

- External material DLL model (issue with time-stepping implementation)
- Application builder

Thank you for your attention Q&A

