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Abstract 
FT wind sensors measure wind speed and direction using an acoustic field superimposed on a flow field in an 

acoustic resonator equipped with three piezoelectric transducers. The study proposed here focuses on the acoustic 

resonance technology of a simplified wind sensor geometry, and how it is affected by geometrical tolerances. In 

particular, it will explore the advantages of using machine learning algorithms to save computational costs without 

compromising the accuracy and reliability of the results. The outcome of this analysis is to optimise the number 

of points needed in the Design of Experiments (DoE) table, the structure of the Deep Neural Network (DNN), the 

learning rate used, and the duration of the DNN training. The results will focus on the comparison between the 

surrogate modelling and FE simulations in terms of accuracy, reliability, and computational time. 
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Introduction 
Machine learning techniques are rapidly advancing, 

enabling the modelling and solving of complex 

problems even without a complete understanding of 

the underlying physics or mathematics. Compared to 

traditional algorithms where the user must provide 

inputs and the rules to get an output, Artificial 

Intelligence (AI) algorithms exploit large datasets to 

identify the laws that relate the inputs to the outputs. 

In particular, a Deep Neural Network (DNN) is a 

type of AI model composed of multiple layers of 

neurons (or nodes) connected by weights that adjust 

during training. However, the performance of a 

DNN is highly sensitive to the choice of its 

parameters, such as learning rate, number of layers, 

number of neurons per layer, and duration of the 

training. The process of tuning these parameters, 

often referred to as hyperparameter optimisation, is 

crucial for maximizing the network's effectiveness.  

This paper explains the process of building a DNN 

starting from a Finite Elements COMSOL 

Multiphysics® model of a simplified wind sensor 

that exploits an acoustic field to compute wind speed 

and direction. The first step is the setup of the 

Multiphysics model, followed by its validation. 

After that, a Design of Experiment (DoE) is 

conducted by exploiting the new functionality 

introduced with version 6.2 of COMSOL 

Multiphysics®. Finally, the table obtained is used to 

train a DNN, testing different settings to optimise the 

hyperparameters. 

Computational Set Up 
FT wind sensors work with an acoustic field 

superimposed on the flow field to compute wind 

speed and direction. To fully model these devices, 

the interactions between the acoustic and flow fields 

should be studied and understood, therefore accurate 

simulation models can take a long time to be set up 

and run. However, to simplify the model, only the 

acoustic field in the absence of flow will be 

considered for this test case. Even for a simple case 

as the one proposed in this study, one simulation 

across the frequency range of interest takes on 

average 4 minutes. If the influence of the tolerances 

on 10 geometrical features wants to be studied, 

choosing only 3 values for each of the parameters 

would require 310 = 59,049 simulations to test all the 

possible combinations. Given that each simulation 

takes 4 minutes, this would require 236,196 minutes 

which corresponds to half a year. Therefore the need 

to explore machine learning algorithms arises, to 

evaluate how they can cope with acoustic resonance 

problems to reduce the computational time without 

compromising the accuracy of the results. 

The primary tool used for this study is COMSOL 

Multiphysics®, alongside the LiveLink for 

SolidWorks®. The simulation process involves 

several key steps: 

- Configuring FE Simulations: establishing 

simulations with appropriate boundary 

conditions in the frequency domain 

- Validating the FE Model: ensuring the 

accuracy and reliability of the FE model, 

through the comparison with experimental data 

- Creating the DoE Table: exploiting 

COMSOL® v6.2 new functionality to create a 

large dataset to be used to train a DNN 

- Training the DNN: using the data from the 

simulations to train the DNN 

- Testing the DNN: evaluating the performance 

of the trained DNN to assess its effectiveness, 

and fine-tuning the hyperparameters 
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FE Model Setup 

The simplified geometry of the wind sensor, 

illustrated in Figure 1, is imported in COMSOL 

Multiphysics® with the LiveLink for SolidWorks®. 

The computational domain is set up following an 

optimisation study outlined in reference [1], and it 

consists of a block that encompasses half of the 

resonator area and expands half wavelength outside 

of it, as shown in Figure 2.  

Figure 1: Wind sensor’s simplified geometry 

The entire computational domain is composed 

exclusively of air, with the sensor's walls treated as 

boundary conditions with an optimised absorption 

coefficient. The pressure acoustic physics is applied 

to the whole domain as this study will focus on the 

acoustic response of the resonator in the absence of 

flow in the frequency domain. The sensor's 

behaviour is replicated by treating the transmitting 

transducer (B following the nomenclature in Figure 

2) as a piston oscillating with constant speed 

amplitude across the frequencies of interest and 

measuring the signal on transducer A. 

Figure 2: Computational domain encompassing half the 

resonator area and extending half wavelength outside of it 

Validation of FE Model 
The Finite Element model presented in the section 

above was validated against experimental data. In 

particular, the normalised pressure magnitude on the 

receiving transducer (A) was compared with the 

voltage signal received by the real transducer while 

testing, and the results are reported in The comparison 

was obtained by measuring the dimensions of a wind 

sensor on a coordinate measuring machine (CMM), 

and using the measured values to create an accurate 

model in COMSOL Multiphysics®. 

Figure 3.  

The comparison was obtained by measuring the 

dimensions of a wind sensor on a coordinate 

measuring machine (CMM), and using the measured 

values to create an accurate model in COMSOL 

Multiphysics®. 

Figure 3: Normalised pressure response of the transducer 

A: comparison of Finite Element simulation with 

experimental results 

Design of Experiments (DoE) 

After the model is validated, it is possible to proceed 

with building the Design of Experiments exploiting 

the surrogate model feature, introduced by 

COMSOL® v6.2 in November 2023. In order to do 

so, the geometry is parametrised in SolidWorks®, 

choosing 10 geometrical parameters, which are 

varied in their tolerance limits with a Gaussian 

distribution to build the DoE table. In addition to the 

geometrical parameters, also the frequency will be 

varied, but following a uniform distribution in the 

band of interest (33-38kHz). The 11 parameters are 

then varied following a Latin Hypercube Sampling 

(LHS) strategy, and the magnitude of the acoustic 

pressure on the receiving transducer, the output of 

the study, is computed for each set of input 

parameters. For this step, it is suggested to use 1000 

points in the DoE for each variable considered, 

therefore in this case, at least 11000 points should be 

needed, but this number will be optimised to 

minimise the computational cost. 

Training of the DNN 

Once the Design of Experiments (DoE) table is 

created, it can be used to train a Deep Neural 

Network (DNN). This is done by adding a function 

to the global definition node and selecting the DNN 

option. This process enables the setup of the neural 

network structure, including the number of layers, 

the number of nodes per layer, and other 

hyperparameters. 

Most of the different options that can be chosen in 

this node will be thoroughly explored to find the best 

combination of the hyperparameters that define the 
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neural network. To start with, a simple structure of 

the DNN was chosen with 3 hidden layers, as per the 

schematics below: 
Figure 4: DNN starting structure with three hidden dense 

layers of 20, 20, and 10 nodes each 

The other hyperparameters were only slightly 

changed from the default combination, leaving the 

Adam method, with α=1e-3 as the learning rate and 

no weight decay option, 512 batch size, the root-

mean-squared error as the loss function, and the 

hyperbolic tangent as the activation function, but 

increasing the number of epochs to 4000 and the 

validation data fraction to 0.2. The random seed was 

left fixed at 0 to ensure the repeatability of the 

results. 

Simulation Results 
This section presents the main findings on how the 

hyperparameters affect the accuracy and reliability 

of DNN predictions. To evaluate the DNN, the Finite 

Element (FE) results from the validated model were 

compared with the predictions made by the DNN for 

the nominal values of the geometrical features and 

the ones obtained with the CMM scan. 

The first factor to consider is the number of points 

needed to build the DoE table. This step is the 

longest of the entire process, so it is crucial to 

balance its computational time and the accuracy of 

the final results. In this case, the error is measured 

using the MSE (Mean Squared Error) between the 

DNN prediction and the FE simulation results. The 

comparison is led both for the nominal values of the 

acoustic resonance wind sensor and for the ones 

obtained with the CMM scan. 

Figure 5: MSE comparing DNN predictions with FE 

simulation results for nominal values geometry and CMM 

scanned ones 

The plot above shows that increasing the number of 

points in the DoE table over 6000 does not bring 

much value to the relative error between the Finite 

elements simulation results and the DNN prediction, 

both for nominal values parameters and CMM 

scanned values. 

On the other hand, comparing the computational 

time needed to build the DoE tables, it takes on 

average 14.5s to compute each line of the table, 

therefore, some estimates of the time needed for 

different numbers of points are provided in the table 

below: 

# points in DoE Computational Time 

2000 8hrs 3mins 20s 

6000 24hrs 10min 

11000 44hrs 18min 20s 

15000 60hrs 25min 
Table 1: Computational time related to different amounts 

of points in the DoE table, using an Intel® Core™ i9 CPU 

@ 3.60 GHz, with 8 cores and 128 GB of RAM 

The second hyperparameter to fix is the learning rate.  

The learning rate controls the speed of training by 

determining the size of the steps taken during the 

gradient descent optimisation of the loss function. In 

gradient descent, the model parameters are updated 

iteratively to minimize the loss function 𝐽(𝜃), 

according to the following rule: 

𝜽𝑛+1 = 𝜽𝑛 − 𝛼𝛁𝜽 𝑱𝑛 

A high learning rate can cause the loss function to 

fluctuate, potentially leading to divergence, whereas 

a too-small learning rate may result in the model 

getting stuck in a local minimum. Therefore, for each 

specific case, it is vital to find a good compromise 

between these two corner cases. Trying different 

options for the case study proposed, the following 

convergence plots are obtained: 

(a) 

 

(b) 

 

(c) 
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 Figure 6: Convergence plots varying the learning rate α, 

being (a) 5x10-3, (b) 1x10-3, (c) 5x10-4, and (d) 1x10-4  

The plots in Figure 6 clearly show that if α is set to 

5x10-3, the loss function exhibits multiple spikes 

which is highly undesirable. Decreasing it to 1x10-3 

improves the situation, even though the descent is 

still not smooth. Lowering it further to 1x10-4 

completely removes the oscillations but reveals that 

the loss function is stuck in a local minimum as the 

error plateaus over many epochs. 

Setting α to 5x10-4 proved to be a good compromise 

as it almost eliminates the oscillations, avoiding the 

divergence of the solution. However, it slowed down 

the training, as at the end of the 4000 epochs, the loss 

function is still decreasing, indicating that further 

improvement is possible. This leads to the next 

hyperparameter to be optimised which is the number 

of epochs needed for the DNN training. 

The number of epochs does not greatly affect the 

training time of the neural network, as in this simple 

case it is in the order of a minute, which is negligible 

compared to the time needed for the DoE; therefore, 

this analysis will be based only on the effects that the 

number of epochs has on the accuracy of the DNN 

predictions, without focusing on the time required 

for the training. 

For this step, the learning rate was set to 5x10-4 and 

the full dataset with 15000 points in the DoE was 

selected, as having more points allows to better 

understand the other parameters’ influence. With 

these settings, the following convergence plot is 

obtained for the training of the DNN: 

Figure 7: Convergence plot for the training of a DNN 

using α=5e-4, 15000 points in the DoE and the layer 

structure in Figure 4 

Stopping the training at the points (a, b, c, d, e) 

indicated in Figure 7, the predictions in the following 

are obtained when the CMM scan values are used to 

evaluate the DNN function:  

Figure 8: Comparison of the DNN prediction when it is 

trained on the same dataset, but for a different number of 

epochs 

The plot in Figure 8 proves that training the DNN for 

1000 epochs is definitely not enough to reach a good 

accuracy of the results, as the DNN is able to pick up 

the first peak resonance but the shape is completely 

different. Keeping training for an additional 1000 

epochs improves the situation leading the DNN to be 

able to predict also the second peak, following the 

finite elements simulation results. Prolonging the 

training brings other smaller improvements which 

can be only qualitatively assessed from the 

comparison with the curve obtained with FE 

simulation. 

As previously, to quantitatively judge the accuracy 

of the DNN predictions in comparison with the finite 

elements simulation results, the mean squared error 

is used as a metric: 

Figure 9: Mean squared error decreases with the number 

of epochs of the training  

Figure 9 confirms the observation obtained from 

Figure 8; the error significantly decreases when the 

DNN is trained for 2000 epochs instead of 1000, and 

then slowly decays, with only marginal 

improvements after 4000 epochs. Although Figure 6 

and  Figure 7 might suggest that the training is not 

completed in 4000 epochs, the last two plots show 

that it is not necessary to keep training to decrease 

the training and validation errors after 4000 epochs, 

as it is already sufficiently small for this application. 
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The layer structure chosen at the beginning proved 

to be a good one, as a negligible error is recorded 

when the DNN predictions are compared with the 

finite elements simulation results. However, it is 

interesting to study how the shape of the network can 

influence the accuracy of the predictions and the 

computational cost of the training. 

For this step of the study, the learning rate and the 

number of epochs to train for were set as the 

optimums just found, 5x10-4 and 4000 respectively, 

and only the structure of the layers was modified. As 

there are infinite possible combinations of the layers, 

the research was narrowed down to the 3 cases: 

- 5 neurons per layer 

- 10 neurons per layer 

- 20 neurons per layer 

For each of these cases, the number of hidden layers 

was gradually increased, starting from a single 

hidden layer.  

Figure 10: MSE comparing the DNN predictions to the FE 

results with different layers configurations 

In Figure 10, MSE was used to determine the 

accuracy of the DNN predictions and compare them 

against the FE simulations using geometrical values 

obtained from the CMM scans. The plot clearly 

shows, as expected, that a higher number of nodes 

per layer and a higher number of layers lead to better 

predictions, as it allows the network to account for 

more interactions between the inputs and more non-

linearities in the relationship inputs-output. 

Comparing the acoustic pressure shape in the 

frequency domain predicted in the three cases, for 

the highest number of layers tested, the plot in Figure 

11 is obtained. 

Figure 11: Comparison of DNN predictions when it is built 

with different numbers of nodes per layer 

It can be observed that although the error appears 

almost zero in Figure 10, using 5 neurons per layer 

with 5 layers is not enough to accurately represent 

the problem. In contrast, even with just two hidden 

layers of 20 neurons each, the predictions are 

significantly improved. This can be explained by the 

fact that when input parameters interact strongly, 

having multiple layers with fewer neurons can 

effectively capture these complex relationships. 

However, in this case, where the effects of the 

geometrical parameters on the final output are less 

correlated, a shallow, wider network provides a 

better representation. 

On the other hand, increasing the number of neurons 

to create a wider network is usually disadvantageous, 

as it significantly increases the number of weights 

that need to be computed compared to simply adding 

more layers, as illustrated below: 

Figure 12: Total number of weights in the neural network 

for an increasing number of layers with different amounts 

of nodes per layer 

In this case, it is evident that increasing the number 

of neurons from 5 to 20 per layer leads to a 

considerable rise in the number of weights as the 

number of layers increases. However, as mentioned 

above, the training of this neural network takes a 

relatively short time compared to the rest of the 

process therefore also the increase of the weights in 

the 20-nodes-per-layer case is not considerable in 

terms of computational time.  

Lastly, adding the weight decay was tested to see if 

it could bring any improvement to the training. It 

consists of limiting the growth of the weights 

following the formula: 

𝐽′(𝜽) = 𝐽(𝜽) + 𝜆 ∑ 𝜽𝑖
2

𝑖

 

This technique is called a regularisation technique 

and helps prevent the overfitting of the training 

dataset. However, this problem was not encountered 

in this case, therefore using the weight decay only 

proved to worsen the situation. 

Finally, the only hyperparameters left, the validation 

fraction and the batch size, were not modified as they 

are greatly correlated with the number of points used 

for training, therefore it was chosen not to change too 

many interconnected parameters together, to be able 

to uncover the effect of each one of them. 
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Conclusions 
This study investigated the impact of various 

hyperparameters on the accuracy and reliability of 

DNN predictions for modelling acoustic resonance 

wind sensors. As explained, to accurately model 

acoustic resonance wind sensors, the interactions 

between the acoustic and flow fields should be 

studied and understood, therefore exploiting ML 

algorithms can bring great advantages in terms of 

computational time.  

The results demonstrated that by using DNNs, a tool 

can be developed to analyse the effect of tolerances 

on acoustic resonance wind sensor geometry in just 

over 24 hours, compared to the six months required 

to capture these interactions using FE simulations. 

The study also examined the influence of individual 

hyperparameters on DNN predictions. It was 

determined that 6000 points in the Design of 

Experiments (DoE) table are sufficient to develop an 

accurate network that maps the 11 inputs to the 

output. Increasing the dataset size would lead to 

higher computational costs without substantial gains 

in prediction accuracy. 

In terms of training configuration, the optimal 

learning rate was found to be 5x10-4, as it effectively 

balanced reducing error without causing the loss 

function to oscillate or diverge. The study showed 

that training for 2000 epochs provided a significant 

reduction in error, while extending training beyond 

4000 epochs resulted in only marginal 

improvements. Hence, 4000 epochs were identified 

as sufficient for this application. 

Finally, the structure of the DNN was also optimised. 

It was observed that a configuration with 20 neurons 

per layer and a shallow network architecture 

provided better predictions than using just 5 neurons 

per layer, with a greater network depth. Increasing 

the number of layers or neurons increases the 

computational complexity due to the larger number 

of weights, but a shallow, wider network was more 

effective for this problem, where the input 

parameters had less correlated effects on the output. 

In conclusion, this study highlights the importance 

of carefully selecting hyperparameters, including 

learning rate, number of epochs, and network 

structure, to optimise the performance and efficiency 

of DNNs in modelling complex physical phenomena 

like those in acoustic resonance wind sensors. 

Unfortunately, hyperparameter tuning must be done 

on a case-by-case basis, as there is no one-size-fits-

all combination that works for every problem. 

However, the impact of each hyperparameter 

highlighted in this study is likely applicable to 

various other problems, lending a level of generality 

to the conclusions drawn. 
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