

1

Towards Machine Learning for Acoustic Resonance Technology
Elisabetta Merico1, Antonio Jimenez-Garcia2
1. Graduate Multiphysics Engineer, FT Technologies Ltd, Sunbury House, Sunbury-on-Thames, TW16 7DX,

UK

2. Principal Research Engineer, FT Technologies Ltd, Sunbury House, Sunbury-on-Thames, TW16 7DX, UK

Abstract
FT wind sensors measure wind speed and direction using an acoustic field superimposed on a flow field in an

acoustic resonator equipped with three piezoelectric transducers. The study proposed here focuses on the acoustic

resonance technology of a simplified wind sensor geometry, and how it is affected by geometrical tolerances. In

particular, it will explore the advantages of using machine learning algorithms to save computational costs without

compromising the accuracy and reliability of the results. The outcome of this analysis is to optimise the number

of points needed in the Design of Experiments (DoE) table, the structure of the Deep Neural Network (DNN), the

learning rate used, and the duration of the DNN training. The results will focus on the comparison between the

surrogate modelling and FE simulations in terms of accuracy, reliability, and computational time.

Keywords: Machine Learning, acoustic resonance technology, DNN hyperparameters optimisation, finite

element method

Introduction
Machine learning techniques are rapidly advancing,

enabling the modelling and solving of complex

problems even without a complete understanding of

the underlying physics or mathematics. Compared to

traditional algorithms where the user must provide

inputs and the rules to get an output, Artificial

Intelligence (AI) algorithms exploit large datasets to

identify the laws that relate the inputs to the outputs.

In particular, a Deep Neural Network (DNN) is a

type of AI model composed of multiple layers of

neurons (or nodes) connected by weights that adjust

during training. However, the performance of a

DNN is highly sensitive to the choice of its

parameters, such as learning rate, number of layers,

number of neurons per layer, and duration of the

training. The process of tuning these parameters,

often referred to as hyperparameter optimisation, is

crucial for maximizing the network's effectiveness.

This paper explains the process of building a DNN

starting from a Finite Elements COMSOL

Multiphysics® model of a simplified wind sensor

that exploits an acoustic field to compute wind speed

and direction. The first step is the setup of the

Multiphysics model, followed by its validation.

After that, a Design of Experiment (DoE) is

conducted by exploiting the new functionality

introduced with version 6.2 of COMSOL

Multiphysics®. Finally, the table obtained is used to

train a DNN, testing different settings to optimise the

hyperparameters.

Computational Set Up
FT wind sensors work with an acoustic field

superimposed on the flow field to compute wind

speed and direction. To fully model these devices,

the interactions between the acoustic and flow fields

should be studied and understood, therefore accurate

simulation models can take a long time to be set up

and run. However, to simplify the model, only the

acoustic field in the absence of flow will be

considered for this test case. Even for a simple case

as the one proposed in this study, one simulation

across the frequency range of interest takes on

average 4 minutes. If the influence of the tolerances

on 10 geometrical features wants to be studied,

choosing only 3 values for each of the parameters

would require 310 = 59,049 simulations to test all the

possible combinations. Given that each simulation

takes 4 minutes, this would require 236,196 minutes

which corresponds to half a year. Therefore the need

to explore machine learning algorithms arises, to

evaluate how they can cope with acoustic resonance

problems to reduce the computational time without

compromising the accuracy of the results.

The primary tool used for this study is COMSOL

Multiphysics®, alongside the LiveLink for

SolidWorks®. The simulation process involves

several key steps:

- Configuring FE Simulations: establishing

simulations with appropriate boundary

conditions in the frequency domain

- Validating the FE Model: ensuring the

accuracy and reliability of the FE model,

through the comparison with experimental data

- Creating the DoE Table: exploiting

COMSOL® v6.2 new functionality to create a

large dataset to be used to train a DNN

- Training the DNN: using the data from the

simulations to train the DNN

- Testing the DNN: evaluating the performance

of the trained DNN to assess its effectiveness,

and fine-tuning the hyperparameters

2

FE Model Setup

The simplified geometry of the wind sensor,

illustrated in Figure 1, is imported in COMSOL

Multiphysics® with the LiveLink for SolidWorks®.

The computational domain is set up following an

optimisation study outlined in reference [1], and it

consists of a block that encompasses half of the

resonator area and expands half wavelength outside

of it, as shown in Figure 2.

Figure 1: Wind sensor’s simplified geometry

The entire computational domain is composed

exclusively of air, with the sensor's walls treated as

boundary conditions with an optimised absorption

coefficient. The pressure acoustic physics is applied

to the whole domain as this study will focus on the

acoustic response of the resonator in the absence of

flow in the frequency domain. The sensor's

behaviour is replicated by treating the transmitting

transducer (B following the nomenclature in Figure

2) as a piston oscillating with constant speed

amplitude across the frequencies of interest and

measuring the signal on transducer A.

Figure 2: Computational domain encompassing half the

resonator area and extending half wavelength outside of it

Validation of FE Model
The Finite Element model presented in the section

above was validated against experimental data. In

particular, the normalised pressure magnitude on the

receiving transducer (A) was compared with the

voltage signal received by the real transducer while

testing, and the results are reported in The comparison

was obtained by measuring the dimensions of a wind

sensor on a coordinate measuring machine (CMM),

and using the measured values to create an accurate

model in COMSOL Multiphysics®.

Figure 3.

The comparison was obtained by measuring the

dimensions of a wind sensor on a coordinate

measuring machine (CMM), and using the measured

values to create an accurate model in COMSOL

Multiphysics®.

Figure 3: Normalised pressure response of the transducer

A: comparison of Finite Element simulation with

experimental results

Design of Experiments (DoE)

After the model is validated, it is possible to proceed

with building the Design of Experiments exploiting

the surrogate model feature, introduced by

COMSOL® v6.2 in November 2023. In order to do

so, the geometry is parametrised in SolidWorks®,

choosing 10 geometrical parameters, which are

varied in their tolerance limits with a Gaussian

distribution to build the DoE table. In addition to the

geometrical parameters, also the frequency will be

varied, but following a uniform distribution in the

band of interest (33-38kHz). The 11 parameters are

then varied following a Latin Hypercube Sampling

(LHS) strategy, and the magnitude of the acoustic

pressure on the receiving transducer, the output of

the study, is computed for each set of input

parameters. For this step, it is suggested to use 1000

points in the DoE for each variable considered,

therefore in this case, at least 11000 points should be

needed, but this number will be optimised to

minimise the computational cost.

Training of the DNN

Once the Design of Experiments (DoE) table is

created, it can be used to train a Deep Neural

Network (DNN). This is done by adding a function

to the global definition node and selecting the DNN

option. This process enables the setup of the neural

network structure, including the number of layers,

the number of nodes per layer, and other

hyperparameters.

Most of the different options that can be chosen in

this node will be thoroughly explored to find the best

combination of the hyperparameters that define the

3

neural network. To start with, a simple structure of

the DNN was chosen with 3 hidden layers, as per the

schematics below:
Figure 4: DNN starting structure with three hidden dense

layers of 20, 20, and 10 nodes each

The other hyperparameters were only slightly

changed from the default combination, leaving the

Adam method, with α=1e-3 as the learning rate and

no weight decay option, 512 batch size, the root-

mean-squared error as the loss function, and the

hyperbolic tangent as the activation function, but

increasing the number of epochs to 4000 and the

validation data fraction to 0.2. The random seed was

left fixed at 0 to ensure the repeatability of the

results.

Simulation Results
This section presents the main findings on how the

hyperparameters affect the accuracy and reliability

of DNN predictions. To evaluate the DNN, the Finite

Element (FE) results from the validated model were

compared with the predictions made by the DNN for

the nominal values of the geometrical features and

the ones obtained with the CMM scan.

The first factor to consider is the number of points

needed to build the DoE table. This step is the

longest of the entire process, so it is crucial to

balance its computational time and the accuracy of

the final results. In this case, the error is measured

using the MSE (Mean Squared Error) between the

DNN prediction and the FE simulation results. The

comparison is led both for the nominal values of the

acoustic resonance wind sensor and for the ones

obtained with the CMM scan.

Figure 5: MSE comparing DNN predictions with FE

simulation results for nominal values geometry and CMM

scanned ones

The plot above shows that increasing the number of

points in the DoE table over 6000 does not bring

much value to the relative error between the Finite

elements simulation results and the DNN prediction,

both for nominal values parameters and CMM

scanned values.

On the other hand, comparing the computational

time needed to build the DoE tables, it takes on

average 14.5s to compute each line of the table,

therefore, some estimates of the time needed for

different numbers of points are provided in the table

below:

points in DoE Computational Time

2000 8hrs 3mins 20s

6000 24hrs 10min

11000 44hrs 18min 20s

15000 60hrs 25min
Table 1: Computational time related to different amounts

of points in the DoE table, using an Intel® Core™ i9 CPU

@ 3.60 GHz, with 8 cores and 128 GB of RAM

The second hyperparameter to fix is the learning rate.

The learning rate controls the speed of training by

determining the size of the steps taken during the

gradient descent optimisation of the loss function. In

gradient descent, the model parameters are updated

iteratively to minimize the loss function 𝐽(𝜃),

according to the following rule:

𝜽𝑛+1 = 𝜽𝑛 − 𝛼𝛁𝜽 𝑱𝑛

A high learning rate can cause the loss function to

fluctuate, potentially leading to divergence, whereas

a too-small learning rate may result in the model

getting stuck in a local minimum. Therefore, for each

specific case, it is vital to find a good compromise

between these two corner cases. Trying different

options for the case study proposed, the following

convergence plots are obtained:

(a)

(b)

(c)

4

(d)

 Figure 6: Convergence plots varying the learning rate α,

being (a) 5x10-3, (b) 1x10-3, (c) 5x10-4, and (d) 1x10-4

The plots in Figure 6 clearly show that if α is set to

5x10-3, the loss function exhibits multiple spikes

which is highly undesirable. Decreasing it to 1x10-3

improves the situation, even though the descent is

still not smooth. Lowering it further to 1x10-4

completely removes the oscillations but reveals that

the loss function is stuck in a local minimum as the

error plateaus over many epochs.

Setting α to 5x10-4 proved to be a good compromise

as it almost eliminates the oscillations, avoiding the

divergence of the solution. However, it slowed down

the training, as at the end of the 4000 epochs, the loss

function is still decreasing, indicating that further

improvement is possible. This leads to the next

hyperparameter to be optimised which is the number

of epochs needed for the DNN training.

The number of epochs does not greatly affect the

training time of the neural network, as in this simple

case it is in the order of a minute, which is negligible

compared to the time needed for the DoE; therefore,

this analysis will be based only on the effects that the

number of epochs has on the accuracy of the DNN

predictions, without focusing on the time required

for the training.

For this step, the learning rate was set to 5x10-4 and

the full dataset with 15000 points in the DoE was

selected, as having more points allows to better

understand the other parameters’ influence. With

these settings, the following convergence plot is

obtained for the training of the DNN:

Figure 7: Convergence plot for the training of a DNN

using α=5e-4, 15000 points in the DoE and the layer

structure in Figure 4

Stopping the training at the points (a, b, c, d, e)

indicated in Figure 7, the predictions in the following

are obtained when the CMM scan values are used to

evaluate the DNN function:

Figure 8: Comparison of the DNN prediction when it is

trained on the same dataset, but for a different number of

epochs

The plot in Figure 8 proves that training the DNN for

1000 epochs is definitely not enough to reach a good

accuracy of the results, as the DNN is able to pick up

the first peak resonance but the shape is completely

different. Keeping training for an additional 1000

epochs improves the situation leading the DNN to be

able to predict also the second peak, following the

finite elements simulation results. Prolonging the

training brings other smaller improvements which

can be only qualitatively assessed from the

comparison with the curve obtained with FE

simulation.

As previously, to quantitatively judge the accuracy

of the DNN predictions in comparison with the finite

elements simulation results, the mean squared error

is used as a metric:

Figure 9: Mean squared error decreases with the number

of epochs of the training

Figure 9 confirms the observation obtained from

Figure 8; the error significantly decreases when the

DNN is trained for 2000 epochs instead of 1000, and

then slowly decays, with only marginal

improvements after 4000 epochs. Although Figure 6

and Figure 7 might suggest that the training is not

completed in 4000 epochs, the last two plots show

that it is not necessary to keep training to decrease

the training and validation errors after 4000 epochs,

as it is already sufficiently small for this application.

5

The layer structure chosen at the beginning proved

to be a good one, as a negligible error is recorded

when the DNN predictions are compared with the

finite elements simulation results. However, it is

interesting to study how the shape of the network can

influence the accuracy of the predictions and the

computational cost of the training.

For this step of the study, the learning rate and the

number of epochs to train for were set as the

optimums just found, 5x10-4 and 4000 respectively,

and only the structure of the layers was modified. As

there are infinite possible combinations of the layers,

the research was narrowed down to the 3 cases:

- 5 neurons per layer

- 10 neurons per layer

- 20 neurons per layer

For each of these cases, the number of hidden layers

was gradually increased, starting from a single

hidden layer.

Figure 10: MSE comparing the DNN predictions to the FE

results with different layers configurations

In Figure 10, MSE was used to determine the

accuracy of the DNN predictions and compare them

against the FE simulations using geometrical values

obtained from the CMM scans. The plot clearly

shows, as expected, that a higher number of nodes

per layer and a higher number of layers lead to better

predictions, as it allows the network to account for

more interactions between the inputs and more non-

linearities in the relationship inputs-output.

Comparing the acoustic pressure shape in the

frequency domain predicted in the three cases, for

the highest number of layers tested, the plot in Figure

11 is obtained.

Figure 11: Comparison of DNN predictions when it is built

with different numbers of nodes per layer

It can be observed that although the error appears

almost zero in Figure 10, using 5 neurons per layer

with 5 layers is not enough to accurately represent

the problem. In contrast, even with just two hidden

layers of 20 neurons each, the predictions are

significantly improved. This can be explained by the

fact that when input parameters interact strongly,

having multiple layers with fewer neurons can

effectively capture these complex relationships.

However, in this case, where the effects of the

geometrical parameters on the final output are less

correlated, a shallow, wider network provides a

better representation.

On the other hand, increasing the number of neurons

to create a wider network is usually disadvantageous,

as it significantly increases the number of weights

that need to be computed compared to simply adding

more layers, as illustrated below:

Figure 12: Total number of weights in the neural network

for an increasing number of layers with different amounts

of nodes per layer

In this case, it is evident that increasing the number

of neurons from 5 to 20 per layer leads to a

considerable rise in the number of weights as the

number of layers increases. However, as mentioned

above, the training of this neural network takes a

relatively short time compared to the rest of the

process therefore also the increase of the weights in

the 20-nodes-per-layer case is not considerable in

terms of computational time.

Lastly, adding the weight decay was tested to see if

it could bring any improvement to the training. It

consists of limiting the growth of the weights

following the formula:

𝐽′(𝜽) = 𝐽(𝜽) + 𝜆 ∑ 𝜽𝑖
2

𝑖

This technique is called a regularisation technique

and helps prevent the overfitting of the training

dataset. However, this problem was not encountered

in this case, therefore using the weight decay only

proved to worsen the situation.

Finally, the only hyperparameters left, the validation

fraction and the batch size, were not modified as they

are greatly correlated with the number of points used

for training, therefore it was chosen not to change too

many interconnected parameters together, to be able

to uncover the effect of each one of them.

6

Conclusions
This study investigated the impact of various

hyperparameters on the accuracy and reliability of

DNN predictions for modelling acoustic resonance

wind sensors. As explained, to accurately model

acoustic resonance wind sensors, the interactions

between the acoustic and flow fields should be

studied and understood, therefore exploiting ML

algorithms can bring great advantages in terms of

computational time.

The results demonstrated that by using DNNs, a tool

can be developed to analyse the effect of tolerances

on acoustic resonance wind sensor geometry in just

over 24 hours, compared to the six months required

to capture these interactions using FE simulations.

The study also examined the influence of individual

hyperparameters on DNN predictions. It was

determined that 6000 points in the Design of

Experiments (DoE) table are sufficient to develop an

accurate network that maps the 11 inputs to the

output. Increasing the dataset size would lead to

higher computational costs without substantial gains

in prediction accuracy.

In terms of training configuration, the optimal

learning rate was found to be 5x10-4, as it effectively

balanced reducing error without causing the loss

function to oscillate or diverge. The study showed

that training for 2000 epochs provided a significant

reduction in error, while extending training beyond

4000 epochs resulted in only marginal

improvements. Hence, 4000 epochs were identified

as sufficient for this application.

Finally, the structure of the DNN was also optimised.

It was observed that a configuration with 20 neurons

per layer and a shallow network architecture

provided better predictions than using just 5 neurons

per layer, with a greater network depth. Increasing

the number of layers or neurons increases the

computational complexity due to the larger number

of weights, but a shallow, wider network was more

effective for this problem, where the input

parameters had less correlated effects on the output.

In conclusion, this study highlights the importance

of carefully selecting hyperparameters, including

learning rate, number of epochs, and network

structure, to optimise the performance and efficiency

of DNNs in modelling complex physical phenomena

like those in acoustic resonance wind sensors.

Unfortunately, hyperparameter tuning must be done

on a case-by-case basis, as there is no one-size-fits-

all combination that works for every problem.

However, the impact of each hyperparameter

highlighted in this study is likely applicable to

various other problems, lending a level of generality

to the conclusions drawn.

References

[1] A. Jimenez-Garcia and G. C. Diwan, "A

comparison of acoustic solvers for FT

ultrasonic wind," in 54th Spanish Congress on

Acoustics, Cuenca, 2023.

