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Abstract 
While the modelling of smooth concentrated contact lubrication has been achieved a few decades ago (1), the 

engineer is often left with no other option than to neglect many aspects of real-world contacts. Among these 

aspects, the contribution of roughness in lubricated contacts is computationally too expensive most of the time. 

However, a comprehensive homogenization method allows for the mathematical separation of the contact scale 

from the roughness microscale, enabling them to be solved in distinct domains in a fully coupled manner (2). This 

approach enables quantitative predictions in contrast to explicit solutions, but it remains computationally 

demanding. In this presentation, the authors demonstrate the feasibility of reducing the parametrization of 

roughness scale equations and interpolating their contribution using a method based on Gaussian Process 

Regressions. This method allows for solving the microscale contribution through pre-calculations and using them 

in a lubricated contact model. This is a proof of concept which establishes the feasibility of the method. It 

constitutes a milestone toward the resolution of rough contact lubrication within an industrially feasible timeframe. 
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Introduction 
The size of typical concentrated contact (tens of µm 

to a few mm) is several orders of magnitude smaller 

than the device (from cm to several m) it serves. 

However, the contact performance over time is 

known to depend largely on surface microgeometry 

or surface roughness (3) (with roughness 

characteristic size between tens of nm to several 

µm). Experimental works are numerous, but models 

are still important to propose and verify explanations 

for the observed phenomena. 

Including the microgeometry influence in the contact 

modeling constitutes a challenge and several 

approaches are developed in the literature depending 

on the end goal. Historically, averaging methods 

became available first thanks to their low 

computation cost; Patir & Cheng (4,5) seminal work 

is still used nowadays in the industry. Averaging 

methods rely on flow factors supposed to account for 

microgeometry influence, but the results mostly 

apply to a smooth equivalent contact and lack 

accuracy. It is however sufficient if qualitative 

results are deemed sufficient. A direct resolution of 

the contact equation up to the microscopic scale 

became available later in some cases with the 

advances of software and hardware capabilities. 

Such method is known as deterministic approach 

and a milestone in this regard is found in the work of 

Quiñonez et al. (6). Whereas software and hardware 

are still making regular progress, the deterministic 

approach is accessible for roughness not too small 

compared to the contact dimensions. Indeed, the 

discretization of the domain must be much smaller 

than the characteristic dimensions of the roughness, 

but the domain size is intimately related to the 

contact dimensions. Moreover, a fine discretization 

in time for transient problems makes the challenge 

even less accessible in many applications.  

 

There is also a third way, stemming from averaging 

methods which are homogenization methods. While 

the former are based on relevant scientific intuition, 

the latter benefit from more formal mathematical 

developments. Bayada proposed a formal definition 

of flow factors (7) and Bayada et al. (8,9) computed 

the first homogenized results for concentrated 

contact at the cost of several simplifying 

assumptions. Budt et al. (10) included the 

deformation taking place at the local scale with a 

FE²-type method, with the roughness scale appearing 

as local extra-dimensions to the contact dimensions. 

Scaraggi et al. (11,12) considered finite-wavelength 

roughness but their approach is limited to low 

contact pressure with pressure independent lubricant 

properties. Checo et al. (2) proposed a homogenized 

model for the stationary elastohydrodynamic 

lubricated (EHL) line contact with pressure 

dependent lubricant viscosity and density. The 

equations are solved with a FE² approach. The 

surface roughness is of finite dimensions and thus 

the method they proposed does not depend on the 

limited case of infinitesimal roughness size. While 

this last work is a breakthrough, the computation 

effort that comes with FE² method forbids its usage 

for the transient case or the point contact: it appears 

necessary to compute the microgeometry behavior 

more efficiently. 

This work proposes a method to solve 

microgeometry equations prior to the full contact 
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computation, and to summarize their response in a 

reduced order model (ROM). First, classical EHL 

equations are reminded to the reader. Then the 

multiscale EHL equations are presented before 

detailing the flow factors that are later summarized 

in the ROM. At last, results using this method are 

presented. 

Classical EHL equations 
EHL occurs at the conjunction between two convex 

bodies with fluid entrainment capacity as seen in 

Figure 1a. In this picture, the bodies are assumed to 

have an infinite out of plane length with an evenly 

distributed load 𝑤: it is a line contact, as opposed to 

the more general point contact. The entrainment 

capacity is summarized by 𝑢𝑒 = (𝑢𝑡 + 𝑢𝑏) 2⁄  the 

entrainment velocity, with 𝑢𝑡 the velocity of the top 

body surface and 𝑢𝑏 the velocity at the bottom body 

surface. At this stage, perfectly smooth surfaces are 

assumed.  

 
Figure 1: a) Two bodies with EHL occurring at the 

conjunction (left), b) zoom at the conjunction between the 

two bodies (right). 

While focusing its attention on the conjunction in 

Figure 1b, the reader notices (1) the full separation 

of the solids by the fluid, (2) the local specific shape 

of the solids which is due to specific hydrodynamic 

pressure distribution and (3) a meniscus which 

concentrates the fluid at the contact vicinity. 

 
Figure 2: EHL computation domains at the contact scale. 

EHL computation using COMSOL Multiphysics 

dates back to the developments of Habchi et al. (13) 

and it is this paper that inspires the present EHL 

implementation. The equation set are presented in 

their dimensional form, but the dimensionless 

versions allow for using unit size geometries as 

computation domain (see Figure 2 and Figure 3). 

Reynolds equation 

A lower dimension Navier-Stokes equation is used 

to compute the thin film, namely the Reynolds 

equation: 

𝜕

𝜕𝑥
(
𝜌ℎ3

12𝜂

𝜕𝑝

𝜕𝑥
) − 𝑢𝑒

𝜕

𝜕𝑥
(𝜌ℎ) −

𝜕

𝜕𝑡
(𝜌ℎ) = 0 

with 𝜌 the fluid density, 𝜂 its viscosity, 𝑥 the position 

in the contact along contact entrainment direction, 𝑢𝑒 

the entrainment velocity, ℎ the film thickness and 𝑝 

the pressure which is also the variable solved for 

here. This equation is solved on the dotted line 

domain Ω in Figure 2, and the boundaries of this line 

are attributed a 𝑝 = 0 Dirichlet boundary condition. 

Solid linear elasticity 

The hydrodynamic pressure computed is applied as 

a boundary load to a single solid domain (in grey in 

Figure 2) which elastic properties are equivalent to 

the cumulated behavior of the two bodies (14). A 

fixed constraint is applied at the bottom of this solid. 

Computing the elastic deformation provides the local 

elastic deformation sum 𝑣 which feeds the film 

thickness expression:  

ℎ = ℎ0 +
𝑥2

𝑅𝑥
+ 𝑣 

with 𝑅𝑥 the reduced curvature radius of the two 

bodies and ℎ0 the rigid body distance. 

Load balance 

This rigid body distance is a scalar which defines the 

solid separation capability of the fluid and is defined 

by solving the load balance equation: 

𝑤 = ∫ 𝑝 𝑑𝑥
⬚

Ω

 

Although not appearing explicitly in this equation, 

ℎ0 value is successfully obtained by computing the 

full equation system (ie. Reynolds equation, solid 

linear elasticity and load balance) in a fully coupled 

manner.  

Multiscale EHL equations 
For engineering purposes, one can consider 

multiscale introduction in the EHL equation by two 

main ideas: 

- Classical space dimension 𝑥 is now instead 

defined by 𝑥̆ the dimension at the contact 

scale and 𝑥̃ is the dimension at the 

roughness scale. The breve ⬚̆ denotes 

contact variables in the followings, and the 

tilde ⬚̃ denotes the roughness variables. A 

scale factor 𝜀 = 𝜆 ∕ 𝑏 separates the two 

dimensions, with 𝜆 the roughness 

wavelength and 𝑏 the Hertzian contact 

semi-width. The classical 𝜕 ∙∕ 𝜕𝑥 

derivation operator is replaced by 𝜕 ∙ 𝜕𝑥̆⁄ +
1
𝜀⁄  𝜕 ∙∕ 𝜕𝑥̃ which can be assimilated to a 

multiscale derivation operator. Since fast 

variations occur due to roughness motion 



 

 

3 

 

 

 

time derivation is redefined with 𝜕 ∙ 𝜕𝑡̆⁄ +
1
𝜀⁄  𝜕 ∙∕ 𝜕𝑡̃ using the same scale factor. 

- The problem unknowns are developed with 

respect to this scale factor 𝜀. For the 

pressure it reads: 𝑝 = 𝜀0𝑝 + 𝜀1𝑝 + ⋯. 

Thanks to the two notions presented, the classical 

EHL equations show terms of different 𝜀 orders and 

the following equation system is defined. 

Roughness scale Reynolds equation 

An equation very similar to Reynolds equation can 

be identified within the 𝜀−1 terms: 

𝜕

𝜕𝑥̃
(
𝜌ℎ3

12𝜂
(
𝜕𝑝

𝜕𝑥̃
+
𝜕𝑝

𝜕𝑥̆
)) − 𝑢𝑒

𝜕

𝜕𝑥̃
(𝜌ℎ̃) −

𝜕

𝜕𝑡̃
(𝜌ℎ̃) = 0 

with ℎ = ℎ̆(𝑥̆) + ℎ̃(𝑥̆, 𝑥̃) the complete film gap, ℎ̆ 

the contact scale film thickness (defined precisely 

later), ℎ̃ = 0 + ℎ𝑟̃ + 𝜀 𝑣̃ the film thickness 

fluctuation, ℎ𝑟̃ the rigid surface roughness gap and 𝑣̃ 

the roughness scale deformation sum. Both last 

terms verify a zero sum across Ω̃. Since most terms 

of the above-described equation are defined using 

roughness scale variables, it is called the Reynold 

roughness scale equation. The 𝜕𝑝 ∕ 𝜕𝑥̆ term is an 

exception, and it behaves like a pressure gradient 

source term coming from contact scale. This 

equation is solved along the boundary represented in 

Figure 3, with periodic boundary condition on 

pressure 𝑝. The transient roughness scale 

computation also requires time-periodic boundary 

conditions: there are different ways to achieve such 

boundaries, but the method selected consists in 

computing many cycles and stop once the time-

periodic steady state is attained, thus realizing time-

periodic boundary conditions. 

 

 
Figure 3: Roughness scale computation domains. 

To isolate the behavior of the fluid and the surface 

microgeometry in response to the different source 

terms, different reduced versions of the roughness 

scale Reynolds equation are also solved: 

𝜕

𝜕𝑥̃
(
𝜌ℎ3

12𝜂

𝜕𝑝1̃
𝜕𝑥̃
) − 𝑢𝑒

𝜕

𝜕𝑥̃
(𝜌ℎ̃) −

𝜕

𝜕𝑡̃
(𝜌ℎ̃) = 0 

𝜕

𝜕𝑥̃
(
𝜌ℎ3

12𝜂
(
𝜕𝑝2̃
𝜕𝑥̃

+
𝜕𝑝

𝜕𝑥̆
)) −

𝜕

𝜕𝑡̃
(𝜌ℎ̃) = 0 

𝜕

𝜕𝑥̃
(
𝜌ℎ3

12𝜂

𝜕𝑝3̃
𝜕𝑥̃
) −

𝜕

𝜕𝑡̃
(𝜌ℎ̃) = 0 

respectively for pressure fluctuation alternative 

variables 𝑝1̃, 𝑝2̃, and 𝑝3̃. 𝑝1̃ equation omits the 

contact scale pressure gradient source term, 𝑝2̃ 

equation omits the Couette source term, and 𝑝3̃ 

equation omits both the contact scale pressure 

gradient source term and Couette source term. It is 

worth noting that all 3 additional equations are 

solved for the film thickness (and deformation) 

under the load of 𝑝, and not the load of the alternative 

variable.  One can show that 𝑝 = 𝑝1̃ + 𝑝2̃ − 𝑝3̃ 

which comes in use for later flow factor 

computation. 

Roughness scale load balance  

The previously defined roughness scale Reynolds 

equation provides a solution of 𝑝 up to an additive 

constant. The unicity of the equation system is 

obtained by selecting the solution verifying 

∫ 𝑝
⬚

Ω̃
 𝑑𝑥̃ = 0. Indeed, 𝑝 constitutes a fluctuation of 

the pressure due to the roughness, and it fluctuates 

around the contact pressure 𝑝 which also becomes a 

mean pressure. This contact pressure is computed in 

the contact scale Reynolds equation and the classical 

EHL load balance. 

Roughness scale linear elasticity 

The solid deformation at the roughness scale is 

computed with linear elasticity equation. The 

pressure fluctuation 𝑝 is applied as a load at the top 

of the solid as seen in Figure 3, and a fixed constraint 

is applied at the bottom. The two remaining 

boundaries verify periodic boundary condition on 

solid displacement.  

Contact scale Reynolds equation 

Thanks to the formal homogenization development, 

additional terms emerge in a contact scale Reynolds 

equation. Such terms are best known in the literature 

as flow factors and their specific nature will be 

detailed in the next section. This contact scale 

equation is composed of the of 𝜀0 terms and reads: 

𝜕

𝜕𝑥̆
(
𝜌̆ℎ̆3

12𝜂̆
Φ𝑥
𝜕𝑝

𝜕𝑥̆
) = 𝑢𝑒

𝜕

𝜕𝑥̆
(𝜌̆Φ𝑠ℎ̆) +

𝜕

𝜕𝑡̆
(𝜌̆ℎ̆) + 𝑟 

with Φ𝑥 and Φ𝑠 classical flow factors, 𝑟 a new flow 

factor emerging from the homogenization procedure, 

𝜌̆ and 𝜂̆ respectively the density and viscosity of the 

fluid only depending on the contact scale pressure 𝑝, 

and ℎ̆ = ℎ0 + 𝑥̆ 𝑅𝑥
2⁄ + 𝑣̆ expressed similarly to the 

classical film thickness expression. 

While Checo et al. (2) solved this whole multiscale 

equation set in a fully coupled manner, the presence 

of the flow factor terms and the existence of a 

rigorous mathematical definition, open the 

possibility to compute them once and for all 

separately. 

Flow factors and relocation 
The flow factors depend on only three macroscopic 

variables ℎ̆, 𝑝 and 𝜕𝑝 ∕ 𝜕𝑥̆. In response, they provide 

the contact scale Reynolds equation with 

ponderations which translate the microgeometry 

effects on the flow at the contact scale. 
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Poiseuille flow factor 

The first flow factor, Φ𝑥, is obtained with the 

average expression: 

Φ𝑥 =
1

𝜆
∫

(

 
𝜌ℎ3

12𝜂
∙
12𝜂̆

𝜌̆ℎ̆3
∙ (1 −

𝜕𝑝3̃
𝜕𝑥̃

−
𝜕𝑝2̃
𝜕𝑥̃

𝜕𝑝
𝜕𝑥̆

)

)

 𝑑𝑥 
⬚

Ω̃

 

Couette flow factor 

The second flow factor, Φ𝑠, is obtained similarly 

with the average expression: 

Φ𝑠 =
1

𝜆
∫

1

𝜌̆ℎ̆
(𝜌ℎ −

𝜌ℎ3

12𝜂
(
𝜕𝑝1̃
𝜕𝑥̃

−
𝜕𝑝3̃
𝜕𝑥̃
))𝑑𝑥 

⬚

Ω̃

 

Transient flow factor 

At last, 𝑟 is defined by: 

𝑟 =
𝜕

𝜕𝑥̆
(
1

𝜆
∫ (

𝜌ℎ3

12𝜂
∙
𝜕𝑝3̃
𝜕𝑥̃
) 𝑑𝑥 

⬚

Ω̃

) 

For the sake of practicality, the ROM for this 

transient flow factor is built on log10(∫ 𝑟 𝑑𝑥) and it 

is only in the contact model that 𝑟 is computed. 

Relocation 

The final goals of such modelling method are: 

1. To predict quantitatively the contact 

behavior with microgeometry influence, 

2. And to predict the minimum film thickness 

and maximum pressure peaks due to the 

microgeometry with the account of local 

deformation. 

The latter goal is called relocation, and it requires 

supplementary information from the roughness scale 

computation. The complete profile of the pressure 

and film thickness fluctuations are computed in the 

simulation, but the minima and maxima of the 

profiles are sufficient to meet goal n°2. These 

minima and maxima are called relocation variables. 

Reduced order model 

Parametrization, scaling and thresholds 

Since the flow factors depend only on the 

macroscopic variables ℎ̆, 𝑝 and 𝜕𝑝 ∕ 𝜕𝑥̆, it is 

possible to define a virtual 3-dimensional space 

based on them. However, their influence on the flow 

factors is not necessarily linear. In the following, this 

space is mapped using 𝐻 = log10(ℎ̆𝑅𝑥 ∕ 𝑏
2), 𝑃 =

log10(𝑝) and 𝑍 = (𝑏 ∕ 𝑝ℎ) ∙ 𝜕𝑝 ∕ 𝜕𝑥̆ respectively 

(with 𝑝ℎ the contact Hertzian pressure). 

  
Figure 4: Cuboid and its training sites. 

Any geometrical point located on the Reynolds 

domain (i.e. in the contact or its vicinity) has a film 

thickness, a pressure and a pressure gradient which 

define a position in this virtual space. However, the 

realistic operating condition of a real world EHL 

contact are limited, which translated in the 𝐻, 𝑃, 𝑍 

space defines a restricted region. Moreover, the 

𝐻, 𝑃, 𝑍 conditions that significantly contribute to 

defining the film build-up and determine lubrication 

are even more restricted. It is therefore possible to 

target the relevant positions in the virtual space and 

only focus on those. These relevant positions are 

bound within a cuboid of the virtual space 

(represented in Figure 4): 

- log10(2𝐴) ≤ 𝐻 ≤ log10(100𝐴) where 𝐴 is the 

dimensionless roughness amplitude. The lower 

boundary is before the boundary regime, 

whereas the upper boundary represents a film 

thickness at which roughness is not supposed to 

contribute to the flow, 

- 5 ≤ 𝑃 ≤ 8.7 which corresponds to the range 

between ambient pressure and 500𝑀𝑃𝑎 ; for 

the considered lubricant, the flow is considered 

as almost zero above this threshold, 

- −2 ≤ 𝑍 ≤ 2 which is a reasonable bounding of 

the range of pressure gradients occurring at the 

contact inlet, during film build-up. 

The validity of the ROM is limited to a roughness-

lubricant couple. Any change of roughness or 

lubricant requires a new ROM. 

 
Figure 5: roughness scale learning algorithms (solid 

arrows: all simulations, dotted arrow: stationary 

simulations only, Underlined black & bold text: main 

method) 

Kriging with Dace or classical interpolation 

COMSOL alone cannot run an algorithm to build the 

desired ROM, but its coupling capabilities with 

MATLAB allow for using additional tools: 

- For the stationary version of the multiscale 

EHL model, the Dace MATLAB toolbox (15) 

is selected.  

- For the transient version of the multiscale EHL 

model, an interpolation using the classical 

interp3 MATLAB function is selected. 

The Dace toolbox contains training tools to build a 

ROM and tools to answer queries efficiently on the 

ROM. The method used by Dace is a type of 
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Gaussian Process Regression. Dace MATLAB 

toolbox answers the exact training value to queries 

targeted on its training sites and can interpolate 

between the training sites in spaces of any 

dimensions (even though the dimension is only 3 

here). 

Algorithm 

The cuboid defined in Figure 4 is mapped with 27 

training sites. For each site, the MATLAB learning 

method requests a computation at the COMSOL 

roughness scale model (see Figure 5) and the Φ𝑥, Φ𝑠, 
and 𝑟 flow factors are evaluated together with the 

relocation variables.  

For the stationary simulations, many test sites (e.g. 

105) are also defined using a Latin hypercube 

distribution in the cuboid. After training the Dace 

ROMs on the 27 first sites, the Dace toolbox (see 

Figure 5, with dotted arrows) can quickly answer the 

105 queries together with an estimate of the error on 

each test sites. The test site with the largest error can 

be used to start a new COMSOL roughness scale 

model (see Figure 5) computation, and the new result 

can be used as an additional training site for the 

ROMs. After the model is updated, the 105 − 1 

remaining testing sites can be used to assess the 

updated ROM errors again. This process of training-

testing-improving can be repeated until the 

maximum error reaches a specific threshold or after 

a pre-defined number of iterations. During the 

COMSOL Contact scale model (see Figure 6Figure 

5) computation, each flow factor is determined by 

calling a MATLAB function (see Figure 6) which 

loads the relevant ROM and assesses the flow factor 

space-dependent vector in response to the space-

dependent vectors of 𝐻, 𝑃 and 𝑍. During post-

treatment, the same process is applied to determine 

the lower and upper values of both film thickness and 

pressure by calling the relocation ROMs. 

 
Figure 6: Contact scale computation algorithm (solid 

arrows: all simulations, dotted arrow: stationary 

simulations only, dashed arrow: transient only, 

Underlined black & bold text: main method) 

For the transient simulations, only the 27 first 

training sites are used. No ROM is built. During 

COMSOL Contact scale model computation, each 

flow factor is determined by calling a MATLAB 

function (see Figure 6) which uses the interp3 

MATLAB function exploiting the 27 training sites. 

The interp3 linear interpolation is used for the 

relocation variables, Φ𝑥 and Φ𝑠, but the more 

advanced maxima interpolation allows for handling 

the transient flow factor. During post-treatment, the 

same process is applied to determine the lower and 

upper values of both film thickness and pressure by 

interpolation on the relocation datasets.  

The limited number of training sites in the transient 

computation is due to the large computation time 

required: the 27 training computations need 

approximately 70h on a 3.5GHz 4 cores processor. 

Since the interpolations built with such limited data 

provided satisfactory performance for a proof-of-

concept, the Dace library and training-testing-

improving process was not used in the transient 

computation presented in the result section.  

 
Figure 7: Stationary simulation flow factor 

representations (600 training sites and 105 testing sites) 

 
Figure 8: Transient simulation flow factor representations 

(27 computed sites only) 

Results 
The stationary results presented in the followings 

correspond to a 𝑀 = 100 and 𝐿 = 5.3 case using 

Moes parameters. The computation is run with 𝑅𝑥 =
1.344 𝑚𝑚, 𝑤 = 154 𝑘𝑁 𝑚⁄ , 𝑢𝑒 = 1 𝑚 𝑠⁄ , which 

results in 𝑝ℎ = 2 𝐺𝑃𝑎, 𝑏 = 49 µ𝑚 and ℎ𝑚𝑖𝑛 =
14 𝑛𝑚. A roughness of amplitude 𝐴 = 1.4 𝑛𝑚 is 

studied, with a wavelength of 𝜆 = 4.9 µ𝑚. 

 

The transient results presented in the followings 

correspond to a 𝑀 = 31.6 and 𝐿 = 2.4 case using 

Moes parameters. The computation is run with 𝑅𝑥 =
344 𝑚𝑚, 𝑤 = 2460 𝑘𝑁 𝑚⁄ , 𝑢𝑒 = 10 𝑚 𝑠⁄ , which 
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results in 𝑝ℎ = 0.5 𝐺𝑃𝑎, 𝑏 = 3.1 𝑚𝑚 and ℎ𝑚𝑖𝑛 =
596 𝑛𝑚. A roughness of amplitude 𝐴 = 60 𝑛𝑚 is 

studied, with a wavelength of 𝜆 = 0.31 𝑚𝑚. The 

contact covers a 8 ∙ 𝑏 amplitude reciprocal linear 

motion, following a sine velocity pattern.  

 
Figure 9: Comparison of different approaches to the 

computation of rough contacts: smooth assumption, 

explicit method, homogenization (FE²) and 

homogenization (this study). Top: film thickness, bottom: 

pressure 

Flow factors  

In the stationary computation, only two flow factors 

are required. They are represented in Figure 7. The 

Poiseuille flow factor 0.50 < Φ𝑥 < 1.35 shows a 

range which can sensibly influence the Reynolds 

equation diffusion coefficient depending on the 𝐻, 

𝑃, 𝑍 triplet. The Couette flow factor has a more 

limited range. 

The three transient flow factors obtained by 

interpolation are represented in Figure 8. Whereas 

the Poiseuille flow factor 0.95 < Φ𝑥 < 1.4 shows a 

more limited range compared to the stationary 

equivalent, Φ𝑠 shows an even more restricted range 

and is almost always equal to 1. Finally, the transient 

flow factor is poor in meaning under this shape. 

The differences in amplitude between the stationary 

and transient Φ𝑥 and Φ𝑠 flow factors may be due to 

the limited number of sites used for the transient 

ones. Indeed, the lack of sites can lead to avoiding 

the more extreme values in the 𝐻, 𝑃, 𝑍 cuboid. This 

difference also advocates for the use of a proper 

training-testing-improving routine.  

Contact scale stationary results 

The contact scale stationary case film thickness and 

pressure results are presented in Figure 9. Different 

approaches to rough contact modelling are 

compared. The smooth contact assumption leads to 

underestimate the maximum pressure and the 

average film thickness value computed with the 

explicit approach (which is computationally 

affordable here and serves as a reference). The 

homogenization (FE²) approach shows a good 

prediction of both film thickness and pressure 

computed with the explicit approach. Finally, the 

homogenization method presented in this study 

shows a very accurate prediction of the envelope of 

pressures and a good prediction of average film 

thickness. However, it tends to overestimate the 

amplitude of the film thickness fluctuations. This is 

probably due to the training sites which are limited 

at 0.5 𝐺𝑃𝑎 maximum pressure, whereas the contact 

experiences 2 𝐺𝑃𝑎 maximum pressure and thus 

more roughness deformation. 

Figure 10: Contact scale transient results at different times. Comparison between explicit and homogenization (this study), 

Top: pressure, bottom: film thickness 
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Contact scale transient results 

Even though the flow factors may lack accuracy over 

the range of the cuboid, they are used to run a 

transient simulation. The explicit (computationally 

affordable, with 42 min computation on a 3.5GHz 4 

cores processor) and homogenization (this study, 30 

min computation on the same computer) methods are 

compared at different dimensionless times in Figure 

10. The pressure behavior at contact scale is well 

predicted by the homogenization method, but the 

pressure fluctuation amplitude is overestimated. 

Both contact scale and roughness scale film 

thickness are well predicted by the homogenization 

method. The computation time is similar for both 

methods, but much smaller roughness would make 

the explicit computation unaffordable whilst the 

homogenization method computation time 

unaffected.  

Conclusions 
A homogenization method for the study of rough 

contact is presented in this document. The method 

consists in decoupling the contact and roughness 

scales. Through a formal mathematical procedure, it 

is possible to compute the roughness lubrication 

behavior independently and prior to the contact scale 

computation. The accuracy of the homogenization 

method results was satisfactory in the stationary and 

transient cases, but the limited range of operating 

condition tested calls for further investigations. 

Moreover, the computation time of the transient flow 

factors and relocation variables requires further work 

to become more affordable. 
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