Time Varying Nonlinear Schrödinger Equation: Bose-Einstine Condensation via Gross-Pitaevskii Eq

> Anthony J. Kalinowski¹ 1. Consultant/ 4 Greentree Drive, East Lyme, CT and 06333

Introduction: Find the quantum mechanics wave enters a small circular 2D free field zone surrounding function $\Psi(x,y,z,t)$ as a solution to the Nonlinear the slit. Beyond this circular region, the V potential Schrödinger equation via the Gross-Pitaevskii term and NL β term are gradually turned on with a ſ equation. Ψ represents a typical boson particle (near shaped step function. Fig.3a is the 2D classic Free Field zero K T) as it interacts with N like neighboring ones Schrödinger counterpart of the 1D Fig.1a; Fig.3c is the 2D counterpart of the 1D Fig.1c; Fig.3d is the same as Fig.3c except found in a dilute gas of ground state bosons.

the sign of the NL β

Computational Method: The 2D Nonlinear Schrödinger Eq.(1) for the behavior of a cold boson particle [1] in terms of non dimensional variables Ψ ,x,y,t with V potential and nonlinear β multiplier control par-

 $i\frac{\partial\Psi}{\partial t} = -\frac{1}{2}\left(\frac{\partial^2\Psi}{\partial x^2} + \frac{\partial^2\Psi}{\partial y^2}\right) + \Psi\left\{V(x,y) + \beta f(\Psi)\right\}$ (1) $V(x,y) = \alpha \frac{1}{2} \left(\gamma_x^2 (x - x_o)^2 + \gamma_y^2 (y - y_o)^2 \right)$ (2) $f(\Psi) = |\Psi|^2$ (3)

ameters are solved with COMSOL'S "General-Form PDE".

Results: • Fig.1 <u>PW Pulse in V(x)<0 Field</u> below validates the $\Psi = \Psi_0 e^{-i\omega t}$ end driven *Wave Guide* COMSOL **FEM** \rightarrow Mathematica propagation vs x and is shown for V < 0

1	a) Free Fld.	\sim		EM model	and $\beta > 0$. The $ \Psi /$
_	$\gamma_{x}=0$ $\gamma_{y}=0$ $\alpha=0$ $\beta=0$		·••		Ψ_0 vs x for 4 time
.5				0	snapshots is shown

• Fig.4 <u>PW Pulse thru two slits</u> below is the same as 1 slit Fig3c, except the PW passes through 2 slits. The idea here is to show how two nonlinear wave functions $\Psi_1 \& \Psi_2$ interact with each other as they emerge from the slits. The aperture and pitch of the slits are shown in the Fig.4a inset. A radial absorbing BC is used at the outer circular model boundary. Bands of constructive & destructive interference are tracked in a four time snapshot sequence {1.3,2.2,3.1,4} where Figs.(4a-d) show a time growth of the re Ψ_1 component. The red local wavelength $\overline{\lambda}$ vs r plot (Fig.4e) inset), predicts traveling cylindrical waves, and at a decreasing wavelength (e.g. Fig.4c inset triangular cutout enlargement in direction of propagation illustrates the $Y_x = 1 | Y_y = 1$ yellow banded Ap=1/2 $\alpha = -1 \mid \beta = 10$ peak to peak spans -transition getting shorter in 30 b) @ t=2.2 \checkmark re Ψ_1 +r direction). Comparing the 1 slit Fig. 3c **e**) < Fig.3c and the 2 slit Fig.4c Fig.3d results, illustrates $\overline{\lambda}$ vs r completely different 10 20 30 0 c) @ t=3.1 d) @ t=4.0 field responses. **Conclusions**: The General-Form PDE option solved the NL Schrödinger Eq. Agreement between COMSOL and an alternate FEM code for long 1-D models in a PW waveguide is obtained. The local k- ω dispersion relation gives an estimate of the expected spatial wavelengths at a given ω which is useful in selecting mesh sizes & applying absorbing BC's. **References:**1. Xavierc A, Et. Al., "Comp. Methods for the Dynamics of the NLSE / GPE", Computer Physics Comm. 00 (2013)

β term off, b')Turn on potential only, c') Turn on both potential & β term. Local k- $\omega \rightarrow$ allowable propagating λ wave $\frac{1}{40}$ lengths @ Fig.1c inset. V>0 & β >0. The $|\Psi|/$ Ψ_0 vs x for 4 time

