Excerpt from the Proceedings of the COMSOL Conference 2024 Boston

REFERENCES

Exploration of Electrode Geometry on Tandem Cascade Catalysis for CO² reduction (CO2R) to methanol

M. García-Batlle, P. Fernandez, C. Sheehan, S. He, T. E. Malllouk, G.N. Parsons, J. F. Cahoon, R. Lopez "Spatially Patterned Architectures to Modulate CO2 Reduction Cascade Catalysis Kinetics. " Publication submitted to *ACS Catalysis* **(2024)**

Enhancing the performance of heterogeneous electrochemical cascades by adjusting electrode geometry to improve diffusional mass-transport in aqueous buffered systems.

P. R. Fernandez.¹, M. G-Batlle^{1,2}, R. Lopez²

- 1. Chemistry, University of North Carolina Chapel Hill, USA.
-

A half-cell catalyst surface is modeled in 2D for a $CO₂$ reduction cascade in a bicarbonate buffer. Periodic boundary conditions are used to capture the repeating architectures. The *1st* catalyst is located on the basal plane, while the 2nd *catalyst* is located on the remaining electrode trench surfaces.

The model considers local concentration gradients of bicarbonate species at quasi-equilibrium and the parasitic hydrogen evolution reaction (HER). *Our results suggest that varying the spatial distribution of active sites plays a significant role in facilitating effective mass-transport between active sites and modulating selectivity*. Moreover, we observe that this trench geometry significantly alters the cascade reaction rate by affecting the local pH.

Abstract

Electrochemical $CO₂R$ cascades holds promise for converting CO₂ to fuels and chemicals. We developed a generalized steady-state simulation in which the catalysts are patterned on a periodic trench design. This geometry is hypothesized to be able to yield a higher net current density for a $CO₂R$ cascade reaction. We investigate the role of geometry on mass transport, local microenvironments, and selectivity for a model $CO₂R$ cascade reaction.

Methodology

Figure 1: Diagram of tandem electrochemical cascade catalysis for CO² reduction to value-added products

- With the modeled catalyst configuration and kinetics, increasing trench depth reaches a maximum pH of 8 at \sim 100 µm and stabilizes as the trench depth increases.
- Angled-closed (confined) trenches perform better than

angled-out (open) trenches for tandem catalysis. This is due to the confined trench geometry increasing local alkalinity within the trench and partially suppressing HER.

Results

Figure 2: Steady-state pH profiles for the confined (left) and open (right) trench geometries. Cat 1 is located at the bottom. Cat 2 is located on the trench walls.

Electrode kinetics are governed using the concentrationdependent Butler-Volmer equation:

$$
i_{loc} = i_0 \left(C_R exp \left(\frac{\alpha_a F \eta}{RT} \right) - C_O exp \left(\frac{-\alpha_c F \eta}{RT} \right) \right)
$$

Cat 2 Cat 2