IREPAL/SER INSTITUT CARNOT MICA

Vaibhav Nain^{a,*}

^a Irepa Laser, Parc d'Innovation, 67400 Illkirch-Graffenstaden, France

Process Simulation of Directed Energy Deposition process using COMSOL Multiphysics®

Thermo-mechanical Simulation for DED

- DED
- Why simulation?
- Challenge!
- Project Goals!

Directed Energy Deposition (DED)

Part defects

Digital test

 $M \land Z \equiv$

Material	Ti-6Al-4V
Construction	Total : 155h
Weight	71kg
Diameter	680 mm

Material	Ti-6Al-4V
Construction	Total : 33h
Weight	14,2kg
Length	1070 mm

Why simulation?

DigitaC6haptetEthreentilssingedink industry for large-part fabrication

MACHINE

SIMULATION

• Machine simulation

Collisions verification

• Machine & path verification

CAD DESIGN & OPERATIONS

- Perform & finalize part design
- Decompose part geometry
- Different operations on bodies

CAM PROGRAMMING

- Specify additive material
- Apply deposition strategies
- Finish & obtain deposition path

PROCESS PARAMETERS OPTIMIZATION

• Trial & error approach

• Lots of time & money

• Cannot predict deformation

PART FABRICATION

- Transfer CAM to DED machine
- Part fabrication
- Process data optimization

Challenge!

Computation time

AS OF TODAY: THE MODELING STRATEGY FOR LARGE DED PART IS NOT VALIDATED

COMPUTATION TIME & ACCURACY

Model	Computatio n speed	Computatio n accuracy	Large-part simulation
Meso scale	×	\checkmark	×
FH	\checkmark	?	\checkmark
SFH	\checkmark	\checkmark	?
Inherent-strain	\checkmark	×	\checkmark

Project Goals!

Digital tool for large-part DED

OUTCOME: PREDICTIVE SIMULATION TOOL FOR LARGE-PART DED

- VALIDATE: With experiment data
 - **FOCUS**: Computation time reduction

DEVELOP: DED process simulation model

INVESTIGATE: Current modeling methods

Methods and use of COMSOL Multiphysics®

- Experiment
- Numerical model development
- Numerical model set-up
- Numerical analyses

Experiment

Experiment DOE

LASER

P: 800 W v_L : 1 m/min ϕ_L : 2.2 mm

MATERIAL

Substrate: S235 Build part: SS 316L

DIMENSIONS

100 layers (2 tracks/layer) Total weld length: 80 m

Sensors location

Experiment

Scan data v/s CAD

Numerical model development

Mesh

ameters	Lumping configuration			
	No	2	4	8
ro layers	100	50	20	10
(mm)	0.45	0.9	1.8	3.6
h elements	58970	37136	32203	28305

Numerical model set-up

Multiphysics simulation **TECOMSOL**

8000

Numerical analyses

Sequential coupling

EXP v/s SIM

Simulation results

IREPA LASER | 12

Simulation results

EXP v/s SIM (Thermal)

Simulation results

EXP v/s SIM (Mechanical)

Final z-distortion (mm)	LDS location
Experimental	3.88
No-lumping simulation	4.83
2-layer lumping simulation	3.65
5-layer lumping simulation	2.89
10-layer lumping simulation	1.53

Simulation results

EXP v/s SIM (Mechanical)

EXPERIMENT

Project Impact!

Industrial part simulation

pump

Ø128x660mm Size

With an addition of 60s in simulation (optimized value)

- Peak temperatures are controlled during fabrication.
- Deformation is reduced by 43%. Validated with EXP data. —
- Complex part "PRINTED 1st TIME RIGHT ".

IREPA LASER | 17

Conclusions

IREPAL/SER INSTITUT CARNOT MICA

• Vaibhav Nain

• <u>vn@irepa-laser.com</u>