

Potential Fields Modeling to Support Machine Learning Applications in Maritime Environments

J. McKenna¹, J. Karst², J. Luttrell IV¹, R. Riedel¹, S. Kar³, and P. Duff⁴

- 2. CTI, Columbus, OH, USA
- 3. RENCI, Chapel Hill, NC, USA
- 4. Naval Research Laboratory, Bay St. Louis, MS, USA

4 October 2024

1. Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi Gulfport, MS, USA

Port of Gulfport, Gulfport MS

The Roger F. Wicker Center for Ocean Enterprise is Located at the Port and is comprised of two buildings on Port property: The Marine Research Center (MRC), and the Roger F. Wicker Ocean Enterprise Facility (Wicker Building or OEF)

Motivation

Unmanned Underwater Vehicles (UUVs) equipped with magnetic sensors are crucial for detecting ferromagnetic objects underwater. Accurate modeling of the magnetic and gravitational field interactions in these environments ensures the effectiveness of detection operations.

- Numerical modeling potential fields in maritime settings is important
 - UXO
 - Archeological Items (e.g. shipwrecks)
 - Geological features
- Field experiments are complex
- Data collection areas are cluttered
- AI/ML techniques
- Multiphysics modeling can be important (magnetic/gravity/acoustics)

>>>> Notitia ostende nobis viam

Calibrated simulations are ideal to generate quality training data to develop ATRs using

UUV SideScan Testing in Shallow Harbor

ERF. WI OCEAN

UUV SideScan Testing in Shallow Harbor

Background Theory

First Order Modeling: Earth's Magnetic Field Induces the Observed Anomaly

Pipe azimuth

Ε

Ν

Angles needed to calculate the perpendicular and parallel components of B_0

Ν Magnetic declination

Е Magnetic inclination

First Order Modeling: Earth's Magnetic Field Induces the Observed Anomaly

- 199, and 499
- demag factor (N=1)

- Along the pipe length, the self-demag factor is approximately 0
- For the first order modeling, we do the following: ightarrow
 - Calculate the pipe volume, and equivalent spherical radius \bullet
 - Project the inducing field to two components: (1) perpendicular to the pipe and parallel to the pipe
 - Obtain the magnetization for both directions: \bullet

$$J^{\perp} = \kappa_e B_0^{\perp} / \mu_0 \quad J^{\parallel} = \kappa_e B$$

Calculate the responses by using a sphere with the above magnetization and equivalent volume of the pipe

>>>> Notitia ostende nobis viam

For assumed relative permeability 2, 5, 50, 100, 200, 500, corresponding susceptibility k would be 1, 4, 99,

For the direction perpendicular to the pipe, the effective susceptibility is given below with N being the self-

Frist Order Modeling: Earth's Magnetic Field Induces the Observed Anomaly

- Assumptions: large stand-off distance (~5x target size)
- Approximations: dipole representation
- Inputs: calculated dipole moment
- Outputs: magnetic anomaly

Amplitude (nT)

>>>> Notitia ostende nobis viam

USV/UUV Platforms

USV Orientation Correction

- The uncorrected data in the top subplot has dramatic changes due to the circular course of the vehicle in this test.
- After orientation correction, the second subplot shows a dramatically reduced variation in magnetic field due to the background environment. Note that onboard IMU data at a low sample rate was used for these corrections, and a higher quality source of orientation data would reduce these effects even further.
- This orientation corrected data is more suitable for analysis to detect small magnetic changes indicative of a target of interest.

>>> Notitia ostende nobis viam

Uncorrected Filtered vs Geodetic Coordinate Transformed Mag Data

USV Shallow Harbor Data

GPS Track - Local Scalar Field

Orientation Corrected Detrended Mag Data in Local

Magnetic Testing

Pipe Parallel / Orthogonal

>>> Notitia ostende nobis viam

Pipe Vertical

USV: Cylindrical Magnet

- The plots at right show the observed vs simulation model results for an 8" long 1" diameter cylindrical magnet. The model uses the GPS path of the test platform, and target properties as input
- The sensor array travels along a West-Northwest direction (X is Easting, Y is Northing, Z is Vertical)
- The simulation matches the observed data within measurement accuracy for all four test passes for both the total field and vector components.

>>>> Notitia ostende nobis viam

USV: 12" Vertical Pipe

- The plots at right show the observed vs simulation model results for a 12" long ~4.5" diameter steel pipe. The model uses the GPS path of the test platform, and target properties as input
- The simulation matches the observed data within measurement accuracy for all four test passes for both the total field and vector components. The background noise in this dataset is comparatively higher due to the lower amplitude of the pipe signature vs the magnet.

COMSOL Simulations

Parameters

Expression Name 100 mur_pipe 46353.6[nT] H0 58.77291[deg] Incl -4.28[deg] Decl 12[in] xx024[in] XX 36[in] XXX 4.026 [in] pir 4.5[in] por

Value 100 4.6354E-5 T 1.0258 rad -0.0747 rad 0.3048 m 0.6096 m 0.9144 m 0.10226 m 0.1143 m

Description Relative permeability Geomagnetic field Local inclination Local declination Length of pipe Length of pipe Length of pipe Inner radius of pipe Outer radius of pipe

Variables

Name	Expression
Gx	cos(Incl)*sin(Decl)
Gy	cos(Incl)*cos(Decl)
Gz	-sin(Incl)

Description

Geomagnetic field direction, x-component Geomagnetic field direction, y-component Geomagnetic field direction, z-component

>>> Notitia ostende nobis viam

Geometry

Geometry statistics Description Value 3 Space dimension Number of domains 10 Number of boundaries 84 Number of edges 156 Number of vertices 92

Background Material

Material parameters

Name	Value	Unit	Property		
			group		
Relative	1	1	Basic		
permeability					

Basic Description Value Relative permeability 1

OCEAN

Material parameters

Name	Value	Unit	Property group
Relative permeability	mur_pipe	1	Basic

Basic Description Value Relative permeability mur_pipe

Magnetic Fields, No Currents

Settings		
Description	Value	Unit
Solve for	Reduced field	
Background magnetic field, x-component	H0*Gx/mu0 _const	A/m
Background magnetic field, y-component	H0*Gy/mu0 _const	A/m
Background magnetic field, z-component	H0*Gz/mu0_ const	A/m

>>> Notitia ostende nobis viam

OCEAN

Mesh statistics Description Value Complete mesh Status Mesh vertices 396865 Tetrahedra 2328593 Triangles 50614 Edge elements 1868 Vertex elements 92 Number of elements 2328593

Computation information Computation time 2 min 37 s

Model Simulations

Cut Line Parallel to UUV: 1m Above

Line data			
Description	Value		
Line entry method	Two points		
Points	{{50, 0, 6.8}, {50, 100, 6.8}}		
Bounded by points	Off		
Additional parallel lines	On		
Distances	{50 <i>,</i> 100}		
Orthogonal vector	$\{1, 0, 0\}$		

Dataset: Cut Line Parallel to UUV: 1m Above

1m Above UUV Parallel to Path: B

Mag Flux Density Norm (nT)

Notitia ostende nobis viam

Mag Flux Density Norm (nT)

ERF. WO OCEAN

3m Above UUV Parallel to Path: B

Mag Flux Density Norm (nT)

Mag Flux Density Norm (nT)

5m Above UUV Parallel to Path: B

Mag Flux Density Norm (nT)

Mag Flux Density Norm (nT)

ERF. WIC OCEAN

1m Above UUV Parallel to Path: By

Mag Flux Density Norm: By (nT)

Å		Mag	Flux	Density	y No	orm:	By:	Para	llel
		Mag	Flux	Density	y No	orm:	By I	Paral	lel 💈 🔤
		Mag	Flux	Density	y No	orm:	Bx I	Paral	lel :
	P .								
	4								
		60			8	1 <u> </u>			10
rc len	gth (r	n)			-				

Mag Flux Density Norm: By (nT)

1m Above UUV Parallel to Path: Bz

Mag Flux Density Norm: Bz (nT)

		1	
	C 4		
	— Mag Flux Dens	sity Norm: Bz	Parallel 1
	— Mag Flux Dens	sity Norm: Bz	Parallel 2
	— Mag Flux Dens	sity Norm: Bz	Parallel 3
	V		
I	V		
	60	80	100
, ien	gui (III)		

Mag Flux Density Norm: Bz (nT)

ML Overview

- Purpose: Use simulated magnetic sensor data to predict anomaly signatures • Approach: Four machine learning models for confirming findings
- Results: Labeled simulated vs predicted sensor measurements

Notitia ostende nobis viam Machine Learning (ML) Background

- An algorithm that "learns" from repetitive tasks
- Based on models with several thousand parameters
- Parameters are estimated using optimization
- Models need large amounts of data to converge
- Many models tend to be "black-box", not explainable inner-workings

ML Modeling

- Regression: ML model based on multiple regression
- Boosting: ML model based on tree ensembles
- DNN (Deep Neural Network): ML model based on neuron layers (relies on present state only)
- LSTM (Long Short-Term Memory): ML model based on present and past (remembered) states

General regression model:

 $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n + e$, where

is the independent and identically distributed error term.

- Regression
 - Trained as above for DNN:

 - sensor would see in the field

y is the dependent variable, β_0 is the intercept, β are coefficients, X are the predictors, and e

Training data was simulated from a modeled 12-inch isopipe (100 permeability) Testing data was simulated from a modeled 24-inch isopipe (100 permeability) Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict the total field (magnetic flux density norm) measurements that a Used to predict to predict the total field (magnetic flux density norm) measurements that a Used to predict to predic

- Boosting

 - Dichotomized sensor readings to above and below mean absolute value Used target permeability, aspect ratio, and UUV speed as predictors Used grid-search to find best values for tree number and maximum depth

DNN

Trained on the simulated vector components of the B field.

- Training data was simulated from a modeled 12-inch isopipe (100) permeability)
- Testing data was simulated from a modeled 24-inch isopipe (100) permeability)
- Used to predict the total field (magnetic flux density norm) measurements that a sensor would see in the field

 Long Short-Term Memory (LSTM) Trained on the simulated vector components of the B field. Ran model for total-, x-, y-, and z-fields • Used a sequence of 10 past data points to predict current point Iterated over entire data set

ML Results

Regression
Best fit (top figure)
R-squared 0.98

• DNN

 Good fit, may need to increase data size (bottom figure)

ML Results

• LSTM

- Good fit (figure to the right)
- Boosting feature importance (%)
 - Target permeability (0.44)
 - Target aspect ratio (0.30)
 - UUV speed (0.26)

Conclusions & Way Ahead

- Simulations in data-scarce situations are essential
- Relatively simple ML models are able to reproduce simple target signatures for a variety of magnetic properties and geometries
- Once a base model is validated is straightforward to generate more data for certain ML approaches
- Next steps:
 - Add Acoustics/Gravity Physics

 - Deploy Apps internally for ML training using COMSOL Server Perform Uncertainty Quantification/Optimization

Simple COMSOL APP

•							Untitled m	nph - Magnetic
File Home Pil	hhan Tah 1						onaccan	ipir mugnetie
(A) =	\bigcirc	\odot	C	\geq	\odot	\odot	\odot	\odot
Geometry Compute T	Total Field at	Total Field at 3m Above UUV	Total I 5m Ab	Field at	1m Above UUV Parallel to Path: B	1m Above UUV Parallel to Path: By	1m Above UUV Parallel to Path: By	1m Above Ul Parallel to Path
			511715		Main	, and the reactines,	, raianer to ratin by	
					IVIdII			
 Inputs 				. ସ୍ ଲ୍	▼ 🕂 🛄 🗮			
Geomagnetic field:	46353.6							
Local inclination:	58.77291							
Local declination:	-4.28							
Relative permeability:	100			46600) -			
Length of pipe:	12							
Length of pipe:	24			46550)			
Length of pipe:	36							
				46500				
 B field [T] 								
Evaluation 3D			(Tn)					
8.85 AUTO 8.5 850 0.85 e-12 e-3 0.85		÷	E	46450				
x y z \	Value		N N					
2771.6 765.60 383.67 2.	.4186E-8		ensit	46400) –			
48.563 51.492 1.5000 4.	.6653E-5		ě Č					
36.414 64.974 6.5000 0.	.026154		Flu	46250				
			Mag	40350	΄Γ			
				46300) -			
				46250) –			
				46200) –			
						10	20	
<		>	~		v	10	20	50

jason.mckenna@usm.edu