Numerical Study of Navier-Stokes Equations in Supersonic Flow over a Double Wedge Airfoil using Adaptive Grids

Ramesh Kolluru¹ and Vijay Gopal¹¹BMS College of Engineering, Bangalore, Karnataka, India

Supersonic Flight

Shock wave formed on supersonic flight (Courtesy:Ensign John Gay, US Navy)

Supersonic Airfoils

Supersonic Airfoil

- Thinner cross-section
- Sharper leading and trailing edge

Subsonic Airfoil

- Thicker cross-section
- Rounded leading and trailing edge

Subsonic Airfoil

Symmetrical Double Wedge Airfoil

$$t_c = \frac{t_a}{c_a}$$
: {0.08, 0.1 and 0.12}

 α : {0⁰, 1⁰, 2⁰, 3⁰, 4⁰, 5⁰, 8⁰ and 12⁰}

• c_a : Chord Length

• t_a : Thickness

• α : Angle of attack

Aerodynamic Coefficients

Section aerodynamic coefficients of an airfoil is defined below:

• Coefficient of pressure
$$C_p = \frac{p - p_{\infty}}{\frac{1}{2} \cdot \rho_{\infty} \cdot V_{\infty}^2}$$

• Coefficient of Lift
$$C_L = \frac{L}{\frac{1}{2} \cdot \rho_{\infty} \cdot V_{\infty}^2 \cdot c}$$

• Coefficient of Drag
$$C_D = \frac{D}{\frac{1}{2} \cdot \rho_{\infty} \cdot V_{\infty}^2 \cdot c}$$

Evaluation of Aerodynamic coefficients

Compressible Navier-Stokes Theory

Non-conservative form:

Mass Conservation:
$$\frac{\partial \rho}{\partial t} + \rho \cdot \nabla \cdot (\mathbf{u}) + (\mathbf{u} \cdot \nabla) \rho = 0$$

Momentum Conservation:
$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \right) = \nabla \cdot \left[-p \cdot \boldsymbol{I} + \mu \cdot \left((\nabla \boldsymbol{u}) + (\nabla \boldsymbol{u})^T - \frac{2}{3} \cdot \nabla \cdot \boldsymbol{u} \cdot \boldsymbol{I} \right) \right]$$

Temperature equation:
$$\rho \cdot C_p \left(\frac{\partial T}{\partial t} + (\boldsymbol{u} \cdot \nabla) T \right) = \nabla \cdot (\boldsymbol{k} \cdot \nabla T) + \frac{T}{\rho} \cdot \left(\frac{\partial \rho}{\partial T} \right)_p \left(\frac{\partial p}{\partial t} + (\boldsymbol{u} \cdot \nabla) p \right)$$
$$+ \nabla \boldsymbol{u} : \left[\mu \cdot \left[(\nabla \boldsymbol{u}) + (\nabla \boldsymbol{u})^T - \frac{2}{3} \cdot \nabla \cdot \boldsymbol{u} \cdot \boldsymbol{I} \right] \right]$$

Ideal gas formulation:
$$p = \rho \cdot R \cdot T$$

Numerical Simulation

• Boundary and Initial conditions:

Free stream parameters	Domain inlet values
Mach numbers (M_{∞})	2.5
Temperature (T_{∞})	218 K
Pressure (P_{∞})	0.2 atm

Domain outlet condition:

$$\nabla T \cdot \boldsymbol{n} = 0$$

Initial domain parameters	Initial domain values for Euler computation
Pressure(p)	0.2 atm
Mach Number(M)	2.5
Temperature(T)	218 K

Grid generation

- Two level adaptive meshing feature on unstructured triangular mesh with first order element is implemented.
- Boundary-Layer cells are added to grid obtained from adaptive meshing.

<u>Solver</u>

- Viscous computation is initialised with prior solution obtained from Euler equations
- All the primary variables while are fully coupled and are solved using pseudo time stepping with a stationary solver.
- The convergence was determined by setting the relative tolerance to 0.01.

Adaptive mesh with boundary layer cells for Adaptive grid for $t_c=0.1~and~\alpha=12^0$ case.

Shock-Expansion Theory

Oblique Shock

OBLIQUE SHOCK

Prandtl-Meyer Expansion

$\beta - \theta - M$ Relation

$$\tan(\beta) = \frac{\left(M_1^2 - 1 + 2 \cdot \lambda \cdot \cos\left[\left(4 \cdot \pi \cdot \delta + \frac{\cos^{-1}(\chi)}{3}\right)\right]\right)}{3 \cdot \left(1 + \frac{(\gamma - 1)}{2} \cdot M_1^2\right) \cdot \tan(\theta)}$$

$$\lambda = \left[\left(M_1^2 - 1 \right)^2 - 3 \cdot \left(1 + \frac{(\gamma - 1)}{2} \cdot M_1^2 \right) \cdot \left(1 + \frac{(\gamma + 1)}{2} \cdot M_1^2 \right) \cdot \tan^2(\theta) \right]^{\frac{1}{2}}$$

$$\chi = \frac{\left(\left(M_1^2 - 1 \right)^3 - 9 \cdot \left(1 + \frac{(\gamma - 1)}{2} \cdot M_1^2 \right) \cdot \left(1 + \frac{(\gamma - 1)}{2} \cdot M_1^2 + \frac{(\gamma + 1)}{4} \cdot M_1^4 \right) \cdot \tan^2(\theta)}{\lambda^3}$$

Isentropic expansion equation

$$-\frac{\theta = f(M_2) - f(M_1)}{f(M) = \sqrt{\frac{(\gamma + 1)}{(\gamma - 1)}} \cdot \tan^{-1} \left(\sqrt{\frac{(\gamma - 1)}{(\gamma + 1)}} \cdot \left(M^2 - 1\right)\right) - \tan^{-1} \left(\sqrt{M^2 - 1}\right)$$

Results

Coefficient of Lift

 $C_L v/s \alpha$ (F.E.M Simulation)

 $C_L v/s \alpha$ (SE-theory)

Coefficient of Drag

 $C_D v/s \alpha$ (F.E.M Simulation)

 $C_D v/s \alpha$ (SE-theory)

Percentage Error estimation for $(t_c = 0.1)$

$$\frac{FEM - SE}{FEM}X100$$

Percentage error of $C_L v/s \alpha$

Percentage error of $C_D v/s \alpha$

• Results for specific case $(t_c = 0.1)$:

Mach number plot at $\alpha=4$

Mach number plot at $\alpha = 12$

Pressure plot at $\alpha=4$

Pressure plot at $\alpha = 12$

Coefficient of pressure C_p $(t_c = 0.1)$

 C_P (SE-theory, $\alpha = 4$)

 C_P (SE-theory, $\alpha = 12$)

 C_P (F.E.M, $\alpha = 4$)

 C_P (F.E.M, $\alpha = 12$)

CONCLUSION

- The solutions obtained from numerical simulation performed with FEM tool is in good agreement with shock-expansion theory.
- The difference in the values of coefficients obtained from SE-theory and compressible NS numerical simulation indicates the expected viscous and wake effects.
- The values of coefficients obtained from F.E.M simulation are only applicable for infinite span wing having airfoil section congruent to aerofoil designed in this current work.

THANK YOU & QUERIES ?