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Abstract: A 3D finite element analysis is carried 
out, using COMSOL software, to reproduce the 
thermal profile obtained with Rosenthal’s 
equation. The implemented heat transfer 
equation has been modified as a means to 
approximate Rosenthal’s solution. An analysis of 
the differences between the simulation and 
Rosenthal’s solution, when the geometry of the 
domain and the source are changed, has been 
performed. In addition, the significance of 
temperature dependent thermal coefficients k and 
Cp has been studied. A way to model the 
temperature profile based on Rosenthal’s 
approach is proposed, as well as a strategy to 
model the thermal profile during tandem arc 
welding. 
 
Keywords: Rosenthal, welding, quasi-steady 
state, heat transfer. 
 
1. Introduction 
 

Rosenthal’s solution [1] is widely used in 
welding, especially for the estimation of t85, 
which is the time needed at a particular position 
in the base metal to go from 800oC to 500oC. It is 
an analytical solution, providing a first 
approximation of the thermal history of the base 
metal during welding. 

The goal of the present work is to explore, 
using a numerical model, how good of an 
approximation is the Rosenthal equation. The 
effect of temperature dependent thermophysical 
properties and the use of tandem welding are 
explored.  

The approach is to simulate numerically the 
same problem solved by Rosenthal. The 
limitations of Rosenthal’s model are well known. 
So by building a more complex model, one can 
assess the effect of a given parameter on the 
temperature profile of the weld and the departure 
from Rosenthal’s model. To accomplish this 
goal, some modifications had to be done to the 
weak form of the heat transfer equation 
implemented in COMSOL. 

Therefore, after comparing Rosenthal’s 
equation to the simulation and studying the 
effect on the geometry of the block and the 
source, the effect of a variation in k and Cp with 
temperature is studied. Ultimately, a way to 
study welding with two wires, is proposed. 
 For the sake of brevity and clarity, the 
various symbols and their values, where 
applicable, are defined at the end of the paper in 
Table A.1.  
 
2. Reference geometry 
 
 Within this study a rectangular geometry was 
used. It is displayed in Figure 1. The source is 
applied on the upper surface along the welding 
direction, at 80% of half the distance of the 
geometry along the welding direction, at A. The 
origin of the axes is placed at the center of the 
block, at B. 

 
Figure 1. Schematic representing the reference 
geometry used in this study. The axis and the 
dimensions of the block are also shown. 
 
3. Equations 

 
3.1 Governing equation 

 
 The equation to be solved here is the heat 
transfer equation: 

 

 ⃗⃗ (  ⃗⃗  )       

  

  
 (1) 
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 It is assumed that the domain is isotropic 
with no volumetric sources and constant 
thermophysical properties. Equation (1) can then 
be written as: 
 

    
   

 

  

  
 (2) 

 
One can define X=x-vt with x being the 

direction of the weld. In the coordinate system 
(X,y,z,t) 
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In this coordinate system steady-state is 

assumed, so the governing equation is: 
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3.2 Boundary conditions 

 
 Rosenthal’s model assumes a semi-infinite 
geometry which means a no flux boundary 
condition. It is not possible to reach steady-state 
with numerical software with this boundary 
condition on all the surfaces and an entering heat 
flux. Therefore, a convective boundary condition 
is applied to all the surfaces except the spot 
corresponding to the source, where an entering 
flux is considered. The equation used is the 
following:   
 

              (5) 
 
3.3 Initial conditions 

 

 The initial temperature (T0) in the base metal 
is taken as equal to the ambient temperature 
(T∞), i.e., 293.15 K. 
 
4. Rosenthal’s equation [1] 
 
 Within the scope of this study, the numerical 
model is compared with Rosenthal’s analytical 
solution. According to Rosenthal, the analytical 
solution for quasi-steady state in a 3D semi-
infinite geometry for a point source is: 
 

     
 

   

                  

 
 (6) 

  
   

 
 (7) 

  
 For the case of two electrodes, the numerical 
solution given by COMSOL is compared with 
the following superposition of two Rosenthal’s 
solutions: 
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(8) 

 

5. Use of COMSOL Multiphysics 
 
5.1 Implementation of the governing equation 

 
 To solve the heat transfer equation presented, 
a 3D steady-state study with the Heat Transfer in 

Solids (ht) module was performed. One problem 
with this module is that the last term of the 
equation, due to the moving coordinate system, 
does not exist. Therefore, a term had to be added 
manually. 
 To do so the Equation View option is 
selected, which requires the Heat Transfer in 

Solids module. The second line of the Weak 
Expressions, which represents the first order 
terms, is then changed from: 
 
-ht.rho*ht.Cp* 

(ht.ux*Tx+ht.uy*Ty+ht.uz*Tz)*test(T) (9) 

 
to 
 
-ht.rho*ht.Cp* 
(ht.ux*Tx+v*Tx+ht.uy*Ty+ht.uz*Tz)* 
test(T) 

(10) 

 
The difference has been underlined. 
 
5.2 Post-processing 

 
COMSOL is also used to compare the 

numerical results obtained by the finite element 
method with analytical ones presented 
previously. The absolute relative error in percent 
is displayed according to: 
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| (11) 

 
To make the results more legible the color 

range for temperature was shortened to [293.15 
K-1800 K]. The temperature should not go 
below the initial temperature and 1800 K is near 
the fusion point of the studied mild steel. No 
phase transformations were accounted for, so this 
part while far from reality is consistent with 
Rosenthal’s assumptions. 
 
5.4 Data 

 

The property data needed to conduct the 
simulations are mainly taken from Nart and 
Celik [2]. All the symbols and their values, 
where applicable, are presented in Table A.1 in 
the Appendix.  

The data were imported from a file into 
COMSOL. COMSOL is also used to interpolate 
the data when the values of k and Cp are varied. 
Only part of this data has been considered. 
Values near and above the fusion temperature 
and solid phase transformations have been 
neglected, because phase transformations are not 
accounted for. The data are presented in Table 1. 
Linear interpolation was utilized. Outside of the 
domain of temperatures covered in Table 1, the 
values for k and Cp are assumed to be constant.  

 
Table 1: Variation of k and Cp with 

temperature [2] 
 

Temperature 
(K) 

Thermal 
conductivity  
(W/(m K)) 

Specific heat 
Cp (J/(kg K)) 

273 51.9 450 
373 51.1 499.2 
573 46.1 565.5 
623 41.05 630.5 
823 34.5 705.5 
873 35.6 773.3 
993 30.64 1080.4 

1023 26 931 
 
6. Results  

 
6.1 One source  

 
 First the source was considered as a flux 
entering the domain via a point source. The 

problem with this approach is that the density of 
nodes of the automatically generated mesh is 
uniform. Therefore, to get rid of some unrealistic 
results, such as a temperature below the initial 
one near the source, high node densities had to 
be used there. The domain was separated into 
two domains to improve the meshing. The 
domain was then composed of a rectangular 
block and a plain hemisphere. However, close to 
the source and according to Rosenthal’s solution, 
an infinite temperature was encountered. A 
numerical solution cannot deal with this 
behavior. Also the post-processing was difficult 
to justify, as very high and unrealistic 
temperatures were reached. This made it difficult 
to display the results correctly. 

The plain hemisphere was removed from the 
slab and the total flux was applied on the free 
surface. A radius must be selected for the 
hemisphere. Table 2 compares the different 
maximum absolute relative errors observed for 
different hemisphere radii. Rosenthal’s approach 
is widely used to obtain the t8/5, which is the time 
to go from 800oC (1093.15K) to 500oC 
(793.15K). Therefore, to complement the 
thermal profile, a surface plot of temperatures 
ranging from 800oC to 500oC is displayed in 
Figure 2 along with the absolute error profile. 
For a radius of 1.10-3 m and 1.10-4 m most of the 
domain displays an absolute relative error below 
1%. 

 
 Table 2: Maximum absolute relative error 

observed for the reference geometry, an extremely 

fine mesh, and several radii of the hemisphere 

 

Hemisphere radius (m) Maximum observed 
absolute relative error 

1x10-2 78.86% 
1x10-3 14.5% 
1x10-4 11.17% (Figure 2) 
1x10-5 25.86% 

 
The effect of size of the domain was first 

studied. To do so, the length of the domain in 
each direction (X,y,z) was changed separately.  

The X direction (Figure 1) was the first to be 
changed. This corresponds to the welding 
direction. When the length of the slab is 
increased from 30 cm to 60 cm, the temperature 
on the domain boundaries increases. This breaks 
the infinite domain assumption used by 
Rosenthal and results in an increase in the 
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maximum absolute error with Rosenthal’s 
analytical solution. The error increases to 
16.62%. When the length in the same direction is 
changed to 15 cm, the maximal absolute relative 
error witnessed drops to 5.2%. 

Then the y direction was studied. When the 
dimension is increased from 10 cm to 20 cm, the 
temperature at the boundaries perpendicular to 
the y direction is the same as the ambient and the 
initial one. Therefore, it is closer to the infinite 
domain assumption. The errors at the edges in 
this direction are smaller, but the maximum 
absolute error with Rosenthal’s analytical 
solution stays the same. When the length in y 
direction is decreased from 10 cm to 5 cm, the 
temperature at the boundaries perpendicular to 
the y direction increases and the maximal 
absolute relative error increases to 28.95%. 

The last dimension studied was the z one, 
which is aligned with the wire feed. When this 
dimension is changed from 5 cm to 10 cm the 
temperature at the bottom surface is the initial 
one, which is in compliance with the assumption 
of infinity. No difference in the maximum 
absolute relative error is observed as the largest 
discrepancies are witnessed along the welding 
direction. When the dimension is changed from 5 
cm to 2.5 cm, the temperature at the bottom 
surface increases. Therefore, the solution moves 
further away from the infinite assumption, which 
triggers a surge in the maximum absolute relative 
error, increasing to 29.14%.  

To explain this behavior, one has to 
remember that the coordinate system used is a 
moving one. As such, the axis along the welding 
direction is equivalent to time. The welding 
direction is the reverse of the X direction. 
Therefore as time increases, X increases. When 
the slab is heated by the source then the 
temperature increases in the y and z direction by 
diffusion. Diffusion takes time to occur. So the 
longer the time after the source passed a given 
point, the further away along the y and z 
direction will the thermal effect be felt. When 
diffusion reaches the boundaries of the domain 
the infinite assumption is broken. This produces 
larger discrepancies. However, calculated 
profiles should always be compared with 
experimental results. 

 

 

 

 

 
Figure 2. The simulations represent different features 
for the reference geometry, with the source applied to 
a 1x10-4 m radius hemisphere and a fine mesh. From 
top to bottom: (a) the temperature profile (K); (b) 
surface plot of the temperature ranging from 1093.15 
K to 793.15 K; (c) the absolute relative error with 
Rosenthal’s model profile; (d) surface plot with the 
same error. 
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6.2 One source - k and Cp as functions of T 

 

 An example of an application for the 
COMSOL model is to determine the influence of 
varying k and Cp on the temperature profile. To 
do so, some data have been considered and 
interpolated as explained in Subsection 5.4. The 
equation solved in this case is the same as 
Equation (4) except that the value of k changes 
with temperature. In this case, the reference 
geometry is used. Figure 3(a) shows the thermal 
profile obtained by using the same conditions as 
for Figure 2(a), except that variations in k and Cp 
have been taken into account. One can notice 
that the area above 1800 K is narrower and more 
elongated in the direction of the weld. This may 
be due to the fact that the Cp increases faster 
when T increases than k decreases when T 
increases. Also in Figure 3(b) and 3(c) the 
absolute relative error with Rosenthal has been 
represented. One can notice that the maximum 
for this error is more than 36 time larger than for 
the case represented in Figure 2. Also, Figure 
3(c) shows that the error on most of the domain 
is larger when the variations in k and Cp are 
taken into account. Therefore, it seems that 
variations in k and Cp with temperature have a 
major effect on the thermal profile in welding. 
 
6.3 Two sources  

 

 Good agreement between the numerical 
solution and the analytical one has been found 
for one source, with k and Cp assumed constant 
(subsection 6.1). The approach, with k and Cp 
constant, was extended to two sources, which are 
represented by a superposition of two analytical 
solutions. To determine whether this approach 
has any validity, a numerical experiment can be 
performed to provide a first impression on the 
relevance of this approach. 
 The temperature profile, as well as the 
absolute relative difference between the 
numerical results and the analytical ones, is 
shown in Figure 4. The difference between the 
superposition of analytical solutions and the 
numerical model is bounded by 17.74%.  The 
large differences are close to the boundaries; 
most of the domain is dark blue in color (Figure 
4b), which corresponds to a difference of less 
than 1%. This approach appears promising and 
should be compared with experimental results. 
 

 

 

 
Figure 3. Results obtained for the same conditions as 
for Figure 2(a), except that variations in k and Cp with 
the temperature have been taken into account. From 
top to bottom: (a) the temperature profile; (b) the 
absolute relative error with Rosenthal’s model; (c) the 
same as (b) but the color range has been shortened to 
the one of Figure 2(c) to make the comparison easier. 
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Figure 4. Simulations representing different features 
for two wire welding, with the reference geometry.  
Two sources applied as two 1x10-4 m radius 
hemispheres separated by 2.5 cm, with the same heat 
input applied to each source and an extremely fine 
mesh. k and Cp are assumed to be constant. From top 
to bottom: (a) the temperature profile in K; (b) the 
absolute relative difference with the superposition of 
two Rosenthal analytical solutions; (c) surface plot of 
the same difference. 
 
7. Conclusions 

 
 It has been demonstrated that it is possible to 
effectively reproduce Rosenthal’s solution by 
using COMSOL. It has also been shown that the 
coordinate in the welding direction is equivalent 
to time and that the discrepancy between the two 
solutions increases as time increases, so that a 

larger geometry must be considered to stay 
within the semi-infinite domain assumption. 

The influence of variations in k and Cp has 
been considered using COMSOL and there is a 
tendency for diffusion to be more directional 
along the welding direction. Also, these 
variations seem to have a major effect on the 
temperature profile during welding. 

A method to model the thermal profile for 
tandem welding, both numerically and 
analytically, has been proposed. 
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10. Appendix 

 
 

Table A.1: List of symbols used 
 
Symbol Description value Units 

Cp Specific heat 600 if 
constant J/(kg.K) 

h Convective 
coefficient 15 W/(m2.K) 

k Thermal 
conductivity 

40 if 
constant W/(m.K) 

P Source power 17290 W 

P1 
Power from 
first source 17290 W 

P2 
Power from 

second source 17290 W 

Q Volumetric 
source 0 W/m3 

qconv 
Thermal 

convective flux - W/m2 

R Distance from 
first source - m 

R’ Distance from 
first source - m 

t Time - s 
T Temperature - K 

Tcalculated 
Temperature 

from simulation - K 

Tanalytical 
Temperature 

from analytical 
formula 

- K 

T0 
Initial 

temperature 293.15 K 

T∞ 
Temperature of 

surrounding 
atmosphere 

293.15 K 

v Travel speed 6.5.10-3 m/s 

x 

Dimension 
along welding 
direction in the 
fixed coordinate 

system 

- m 

X 

Same as x, but 
in moving 
coordinate 

system 

- m 

 
 
 
 

 
 
 
 
 
Symbol Description value Units 

X’ 

Distance 
between the 

second source 
and a point 
along the X 

direction 

- m 

y 
Dimension 

perpendicular to 
the other two 

- m 

z 
Dimension 

aligned with the 
wire feed 

- m 

λ 
Inverse of the 

thermal 
diffusivity 

118050 if 
constant s/m2 

ρ Density 7870 kg/m3 
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