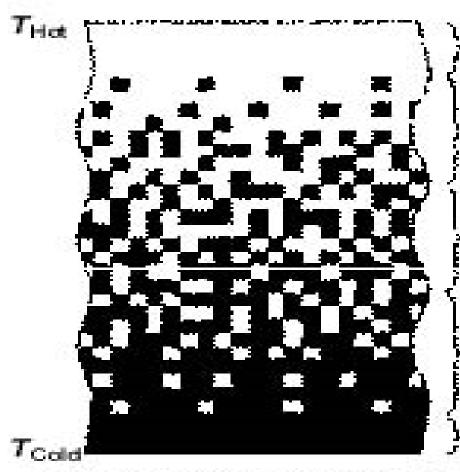
Modal Analysis of Functionally Graded Metal-Ceramic Composite Plates


Wes Saunders, Kevin Pendley and Ernesto Gutierrez-Miravete Rensselaer at Hartford

Objectives

- To use the Finite Element Method (FEM) in COMSOL Multiphysics to perform modal analysis of functionally graded materials (FGM) and determine the natural modes of vibration and the mode shapes.
- To compare the results of the COMSOL FEM approximation with other methods of calculation.

Functionally Graded Material

Ceramic phase

Ceramic matrix with metallic inclusions

Transition region

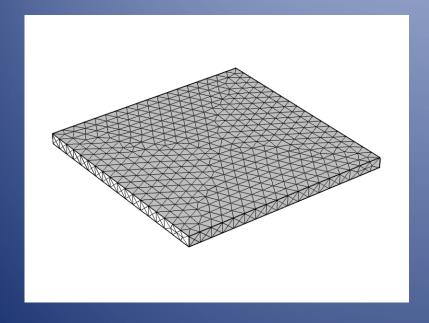
Metallic matrix with ceramic inclusions

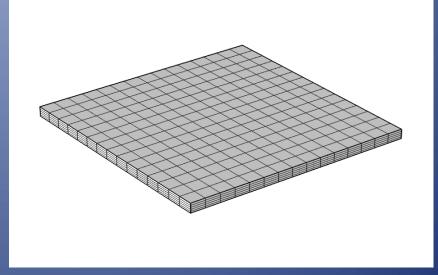
Metallic phase

(a) Continuously graded microstructure.

Background

FGMs


- FGMs are defined as an anisotropic material whose physical properties vary throughout the volume, either randomly or strategically, to achieve desired characteristics or functionality
- FGMs differ from traditional composites in that their material properties vary continuously, where the composite changes at each laminate interface.
- FGMs accomplish this by gradually changing the volume fraction of the materials which make up the FGM.
- FGMs can be readily produced through 3D Printing


Modal Analysis

 Modal analysis involves imposing an excitation into the structure and finding the frequencies at which the structure resonates.

Modal Analysis with Finite Elements

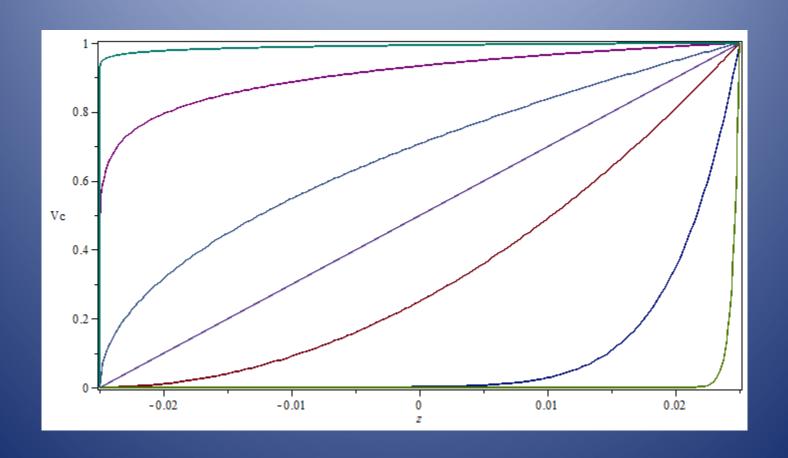
$$(-\omega^2\mathbf{M} + \mathbf{K})\mathbf{u} = 0$$

Mori-Tanaka Method

The Mori-Tanaka Method is used to estimate the material properties of the FGM (density ρ , bulk modulus K and shear modulus μ) at any point in the plate as functions of the volume fractions and material properties of the constituent materials

$$\rho_{FGM} = \rho_M V_M + \rho_C V_C$$

$$K_{FGM} = K_M + \frac{(K_C - K_M)V_C}{1 + \frac{(1 - V_C)(K_C - K_M)}{K_M + \left(\frac{4}{3}\right)\mu_M}}$$


$$\mu_{FGM} = \mu_M + \frac{(\mu_C - \mu_M)V_C}{1 + \frac{(1 - V_C)(\mu_C - \mu_M)}{\mu_M + f_1}}$$

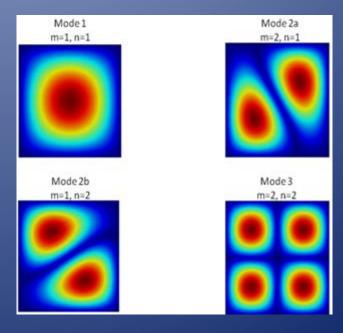
$$\lambda = K - (2/3) \mu$$

$$v = [2(1 + \mu/\lambda)]^{-1}$$

$$E = 3 (1 - 2 v) K$$

Volume Fraction of Ceramic through Plate Thickness

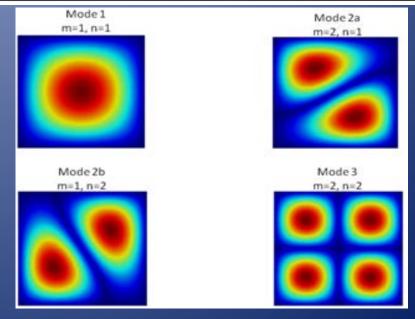
Problem Description


- Each Case
 - Frequencies (4)
 - Mode Shapes (4)
 - Plates 1m x 1m, 0.025m and 0.05m thick
- Case A
 - Compare to theoretical values
- Case B-D
 - Compare to isotropic
- Select Cases
 - Compare to Efraim formula

Case	Functionality	Materials
		Steel
A	Isotropic	Aluminum
		Alumina
		Zirconia
В	Linear	Aluminum-Zirconia
С	Power Law n=2	Steel-Alumina
		Aluminum-Zirconia
D	Power Law n=10	Steel-Alumina
		Aluminum-Zirconia

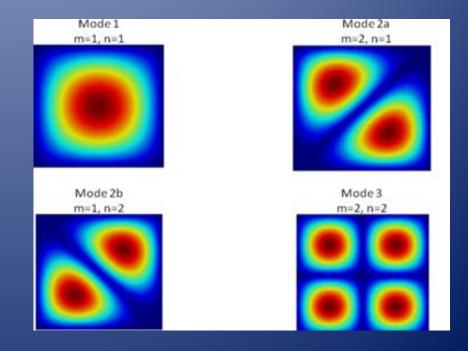
Results – Isotropic Plates

- Isotropic results matched with theory
- Reasons for isotropic case
 - Verify FEA model
 - Check plate thickness limit
 - Have baseline for comparison to FGM


		h=0.025m			h=0.05m		
Material	Mode (m,n)	Frequency Ref [3] [Hz]	Frequency (FEA) [Hz]	Percent Error	Frequency Ref [3] [Hz]	Frequency (FEA) [Hz]	Percent Error
	1 (1,1)	85.10	84.55	0.65	170.20	166.14	2.39
Stee1	2a (1,2)	212.75	211.79	0.45	425.50	413.73	2.77
	2b (2,1)	212.75	211.84	0.43	425.50	413.95	2.71
	3 (2,2)	340.40	338.07	0.68	680.80	651.36	4.32

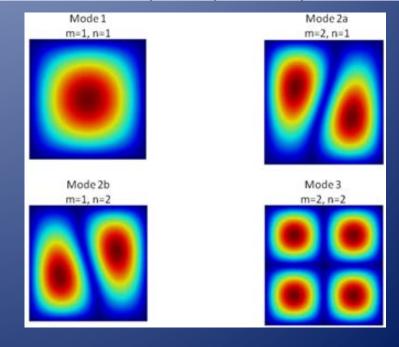
Results – Linear Profile

- Represents, on average, a 50/50 metal-ceramic
 FGM
- h=0.05m frequencies were bounded by their constituent materials
- Mode shapes 2a and 2b swapped from where they were in isotropic cases


		h=0.025m	h=0.05m
	Mode	Frequency	Frequency
FGM	(m,n)	(FEA)	(FEA)
	(111,11)	[Hz]	[Hz]
	1 (1,1)	59.67	116.01
Bottom Material: Aluminum	2a (1,2)	150.29	287.45
Top Material: Zirconia	2b (2,1)	150.31	287.48
	3 (2,2)	238.52	447.64

Results – Power Law n=2

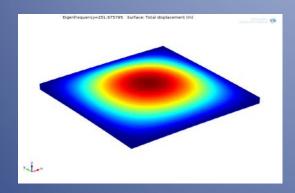
- Represents, on average, a 67/33 metal-ceramic
 FGM
- Frequencies are bounded by their constituent materials
- Mode shapes are changed by addition of ceramic

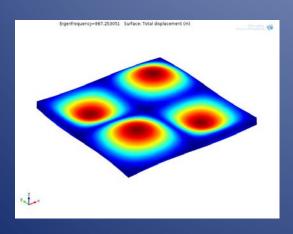

		h=0.025m	h=0.05m
	Mode	Frequency	Frequency
FGM	(m,n)	(FEA)	(FEA)
		[Hz]	[Hz]
	1 (1,1)	54.88	107.11
Bottom Material: Aluminum	2a(2,1)	137.2	265.16
Top Material: Zirconia	2b (1,2)	137.21	265.2
	3 (2,2)	217.72	412.47

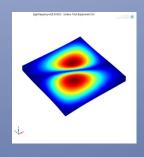
Results – Power Law n=10

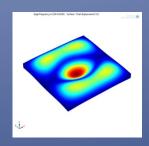
- Represents, on average, a 91/9 metal-ceramic
 FGM, or a metal plate with a thin ceramic coating
- Frequencies were very close to isotropic metal frequencies
- Mode shapes 2a and 2b highly distorted due to presence of ceramic

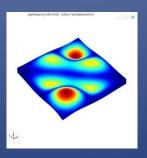
		h=0.025m	h=0.05m
	Mode	Frequency	Frequency
FGM	(m,n)	(FEA)	(FEA)
		[Hz]	[Hz]
	1 (1,1)	49.51	96.34
Bottom Material: Aluminum	2a(2,1)	123.76	238.65
Top Material: Zirconia	2b (1,2)	123.76	238.65
	3 (2,2)	196.17	370.62

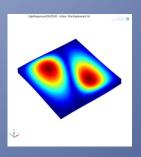

Comparison to Efraim

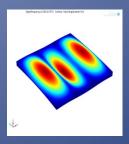

$$f_{FGM} = f_M \sqrt{\frac{\rho_M \cdot E_{eq}}{\rho_{eq} \cdot E_M}} \cdot V_M + f_C \sqrt{\frac{\rho_C \cdot E_{eq}}{\rho_{eq} \cdot E_C}} \cdot V_C$$

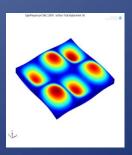

Material	Mode	Frequency ANSYS Hz	Frequency COMSOL Hz	Frequency Efraim ANSYS Hz	Frequency Efraim COMSOL Hz	Error % ANSYS	Error % COMSOL
	1	191.06	188.41	188.2	189.46	1.52	-0.55
Steel	2	475.17	467.67	467.51	473.66	1.64	-1.26
Alumina p = 10	3	475.17	467.67	467.51	473.66	1.64	-1.26
	4	751.29	729.74	738.45	757.86	1.74	-3.71


A356-ZrO2


Material	ρ (kg/m ³)	E (Pa)	v (-)
A356	2670	7.24e9	0.33
ZrO,	5575	1.75e11	0.27







Conclusions

- Modal analysis of FG plates is easily performed using COMSOL Multiphysics
- When considering a FGM that is metal and ceramic, the frequency seems to follow the metal while the mode shape seems to the follow the ceramic
- The FEA results from COMSOL were in good agreement with those computed by Efraim's formula and also with results obtained using a different FEA program.
- Ongoing work is exploring the application of the methodology for the stress analysis of more complex components produced by 3D printing