Deformation of Stamp Features with Slanted Walls during Microcontact Printing

F. E. Hizir¹, H. M. Al-Qahtani ^{1, 2}, and D. E. Hardt¹

¹Massachusetts Institute of Technology

²King Fahd University of Petroleum and Minerals

Outline

- Introduction
- Research Motivation and Objectives
- Simulations
- . Simulation methodology
- . Simulation results
- Conclusions and Future Work

Microcontact Printing

Microcontact printing

- [1] what-when-how.com
- [2] A. Bernard et. al., Advanced Materials, 2000.
- [3] M. Thery and M. Pitel, Cold Spring Harb Protoc, 2014
- [4] diseasebiophysics.seas.harvard.edu

Etch resists for micromachining

Protein patterns for biosensors

Cell patterns for tissue engineering research

Defect Modes

Existing Studies: focus on Straight Walls

Motivation: Features with Slanted Sidewalls

- J. E. Petrzelka and D. E. Hardt, Proceedings of SPIE, 2013.
- J. E. Petrzelka, PhD Thesis, Massachusetts Institute of Technology, 2012.
- L. Nietner, MS Thesis, 2014.

Objectives

How do slanted walls behave?

- Roof collapse pressure?
- Effect of slant angle?
- Effect of feature spacing?

Simulation Setting

- Simulations in experimentally achievable dimension range
- Free triangular mesh enables better convergence compared to other structured mesh types
- Rigid support is fixed constraint
- PDMS stamp is hyperelastic material

Dimensions

h=10 μ m w=20 μ m t=2 mm 100 μ m < a < 400 μ m 90° < α <150°

PDMS properties

Density = 970kg/m ³	
Lame parameter λ = 6.93 GPa	
Lame parameter μ = 0.77 GPa	
Poisson's ratio = 0.43	

COMSOL CONFERENCE 2014 BOSTON

Simulation Setting

Domain, Boundary, Point	Condition
1	- Hyperelastic material
2	- Fixed constraint
(10); (6, 9, 7, 8)	- Contact couple 1 (zero friction coefficient)
(8); (9, 7)	- Contact couple 2 (zero friction coefficient)
3, 4	- Symmetry
5	- Prescribed displacement
6, 7, 8, 9, 10, 11	- Free
В	- Fixed constraint
A	- Prescribed displacement (d _x =0, d _y =unspecified)

Upper stamp boundary

- Displace with 1 micron increments until roof collapse occurs

Traction at the top boundary

- Convert displacement to load

Two contact couples

- Support and stamp contact
- Contacting stamp edges

3-micron fillet at stamp corner

- Eliminate convergence issues

Mesh Refinement

Simulation Results

- Collapse pressure increases by 50% with slant angle
- Slanted walls are beneficial for printing

Simulation Results

- Collapse pressure decreases with feature spacing for all slant angles
- Collapse pressure not affected by spacing for h>300µm

Conclusions and Future Work

- Design guidelines are established to prevent roof collapse of stamps using slanted-walled features
- Simulations show that slanted walls help improve stamp stability
- Future work is to examine other collapse modes and include liquid ink in the simulations

Thank you

Q&A

Straight Walls

feature height=10 μm feature width=20 μm thickness of layer above stamp feature=2 mm
feature spacing=100 μm

Slanted Walls

