

Small Scale Yielding Model for Fracture Mechanics

J. Thomas, J.S. Crompton, and K.C.

Overview

- Motivation
- Theory
- Use of COMSOL Multiphysics
- Results
- Summary

Motivation

- Fracture mechanics study of cracked structures
- Structural failures often produced by propagation of existing defects
- Calculate safe life for structures containing defects

Motivation

- Determine the capabilities of COMSOL Multiphysics for conducting computational fracture mechanics
- Compare results with well-established computational fracture mechanics software

Theory

- Early work single parameter to describe crack tip stress/strain
 - K for linear elastic fracture mechanics
 - J for elastic-plastic fracture mechanics
- Computational fracture mechanics calculate crack tip stress/strain
 - Calculate single parameter for complex structures
 - Determine effect of finite length scales on crack tip stress/strain

Small Scale Yielding Model

Plastic zone small compared with all length scales

Used as a reference solution in computational

fracture mechanics

Modeling Methodologies

- Linear elastic fracture mechanics (LEFM)
 - Elasticity dominates the solution
 - Singularity at crack tip defined by stress intensity factor (K)
- Elastic plastic fracture mechanics (EPFM)

- Ramberg-Osgood -
$$\frac{\varepsilon}{\varepsilon_0} = \frac{\sigma}{\sigma_0} + \alpha \left(\frac{\sigma}{\sigma_0}\right)^n$$

- Small strain plasticity

•
$$\varepsilon = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}})$$

Large strain plasticity

•
$$\varepsilon = 1/2 \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathsf{T}} + (\nabla \mathbf{u})^{\mathsf{T}} \nabla \mathbf{u} \right]$$

Use of COMSOL Multiphysics

Use of COMSOL Multiphysics – J-Integral

$$J = \int_{\Gamma} \left(W_s n_x - T_i \frac{\partial u_i}{\partial x} \right) ds$$

Results - LEFM

Normalized
Distance ahead of crack tip

Results – EPFM (Small Strain)

Results – EPFM (Large Strain)

Summary

- COMSOL Multiphysics provides the capabilities needed for computational fracture mechanics
- Software accurately calculates the near tip strain/stress fields for
 - LEFM
 - EPFM (small and large strain)

