Numerical Modelling of the Original and Advanced Version of the TEMKIN-Reactor for Catalysis Experiments in Laboratory Scale



TECHNISCHE UNIVERSITÄT DARMSTADT

CONFERENCE

2014 CAMBRIDGE

COMSOL

#### D. Götz, M. Kuhn, P. Claus

TU Darmstadt, Ernst-Berl-Institute for Technical and Makromolekular Chemistry - Chemical Technology II, Alarich-Weiss-Straße 8, D-64287 Darmstadt, Germany

#### Introduction

Many industrial, especially heterogeneously catalysed, Kul'kova developed a new reactor design for the where the catalyst pellets are aligned in the centre of

processes are characterised by a strong interaction between the reaction kinetics and transport phenomena. Because experiments in laboratory scale can be very time- and cost-intensive, Temkin and direct testing of industrial catalysts.<sup>[1]</sup> Based on this concept of linearly alternating catalyst and inert pellets inside a small tube, our working group developed an advanced version of this reactor

separate small cavities.<sup>[2]</sup> The performance of the two TEMKIN reactor designs regarding catalysis experiments is evaluated and compared by using COMSOL Multiphysics<sup>®</sup>.<sup>[3-4]</sup>

| Overview                                                                                                                                                                                                                                                                                                                                                                    | <b>Computational Method</b>                                                                                                         | Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li><b>TEMKIN reactor design</b></li> <li>Original version</li> <li>Advanced version</li> </ul>                                                                                                                                                                                                                                                                        | <ul> <li>Mass, energy and momentum balances</li> <li>Distinguishing between different domains:</li> <li>Original version</li> </ul> | Pulse tagging experiments • Fast pulse detection using a thermal mass flow meter <i>Excluding diffusion in porous domains:</i> 0.6 (a) inlet is second is second in the porous domains: (b) inlet is second |
| <ul> <li>Selective hydrogenation of acetylene</li> <li>Removal of acetylene traces in the C<sub>2</sub> cut of a steam cracker</li> <li>Industrial tail-end conditions <ul> <li>T = 45 °C, p<sub>abs</sub> = 11 bar, GHSV = 4000 h<sup>-1</sup></li> <li>Hydrogen, acetylene, propane (standard): 1 Vol-% each; Ethylene: 30 Vol-%; Argon: 67 Vol-%,</li> </ul> </li> </ul> | <ul> <li>Advanced version</li> </ul>                                                                                                | <ul> <li>Figure 2 Measured and predicted pulse signal shapes of the advanced TEMKIN reactor. (3D simulations, Carrier flow: 176 mL/min)</li> <li>Catalysis experiments</li> <li>4 reactor modules in tap-connection arrangement</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

- Cylindrical Pd-Ag/Al<sub>2</sub>O<sub>3</sub> egg shell catalyst
- Kinetics based on PFR experiments<sup>[5]</sup>
  - Reactions occurring at two different active sites  $s_1$  and  $s_2$



→ Reaction rate scaling factors for varying specific numbers of the two active sites (⇒ see validation)



Figure 1 Different balancing domains in the two- and three-dimensional models.

- Free gas flow (cyan)
   ⇒ Modelling of laminar fluid flow coupled with heat and species transport
- Inert support (white)
  - Modelling of species and heat transport in porous media (no convection)
  - Catalytically active shell (red) ⇒ Modelling of species and heat transport in porous media including reaction kinetics
- Reactor body (not shown above)
   ⇒ Modelling of heat transport



**Figure 3** Predicted (lines) and measured (dots) conversion and selectivities when optimising active site rate scaling factors (contour plot). (2D simulations, tail-end conditions)

#### ⇒ Validation successful

## **Performance Evaluation regarding Catalysis Experiments**

# **Residence time distributions** Influen

#### Influence of mass transport



### **Thermal conditions**





**Figure 4** Simulated residence time distributions of acetylene in comparison to simple CSTR cascade models.



**Figure 5** Colour coded values of the acetylene concentration  $c_A$ , gas velocity u and differential ethane selectivity  $s_{Ea}$ .

#### ⇒ Simple CSTR cascade models fail due to complex intraparticular mass transport

#### Minimising transport limitations by reducing dead zones



**Figure 6** Temperature distribution in the reactors either including or excluding pellet brackets assuming a typical reaction heat in the active shell under tail-end conditions.

# ⇒ Isothermal behavior in both reactor types

#### References

- [1] M. Temkin, N. V. Kulkova, *Kinet. Katal,* **1969**, 10, 461-463.
- [2] a) Patent DE200920003014, **2009**.
  - b) T. Schulz, Thesis, TU Darmstadt, in preparation.
- [2] c) M. Kuhn, M. Lucas, P. Claus, *Chemie Ingenieur Technik*, submitted.
- [3] COMSOL Multiphysics, Version 4.3b, COMSOL AB, Stockholm.
- [4] D.Götz, M.Kuhn, P.Claus, *Chemical Engineering Research and Design*, submitted.
- [5] A. Pachulski, R. Schödel, P. Claus, *Applied Catalysis A: General* **2012**, 445–446, 107– 120.

**Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge**