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TEMKIN reactor design
• Original version

• Advanced version

Selective hydrogenation of acetylene
• Removal of acetylene traces in the C2 cut of a 

steam cracker

• Industrial tail-end conditions 
• T = 45 °C, pabs = 11 bar, GHSV = 4000 h-1

• Hydrogen, acetylene, propane (standard): 1 Vol-% 
each; Ethylene: 30 Vol-%; Argon: 67 Vol-%, 

• Cylindrical Pd-Ag/Al2O3 egg shell catalyst

• Kinetics based on PFR experiments[5]

• Reactions occurring at two different active sites s1 and s2

 Reaction rate scaling factors for varying specific numbers 

of the two active sites ( see validation)

Many industrial, especially heterogeneously catalysed,

processes are characterised by a strong interaction
between the reaction kinetics and transport
phenomena. Because experiments in laboratory scale
can be very time- and cost-intensive, Temkin and

Kul’kova developed a new reactor design for the

direct testing of industrial catalysts.[1] Based on this
concept of linearly alternating catalyst and inert
pellets inside a small tube, our working
group developed an advanced version of this reactor

where the catalyst pellets are aligned in the centre of

separate small cavities.[2] The performance of the two
TEMKIN reactor designs regarding catalysis
experiments is evaluated and compared by using
COMSOL Multiphysics®.[3-4]
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Numerical Modelling of the Original and 

Advanced Version of the TEMKIN-Reactor 

for Catalysis Experiments in Laboratory Scale

Mass, energy and momentum balances

• Distinguishing between different 
domains:

• Original version

• Advanced version

• Free gas flow (cyan) 
 Modelling of laminar fluid flow coupled with heat and species 
transport

• Inert support (white)
 Modelling of species and heat transport in porous media (no 
convection)

• Catalytically active shell (red)
 Modelling of species and heat transport in porous media 
including reaction kinetics

• Reactor body (not shown above)
 Modelling of heat transport
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Figure 3 Predicted (lines) and measured (dots) conversion and selectivities

when optimising active site rate scaling factors (contour plot). 

(2D simulations, tail-end conditions)
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Figure 2 Measured and predicted pulse signal shapes of the advanced TEMKIN 

reactor. (3D simulations, Carrier flow: 176 mL/min)

Excluding diffusion in porous 
domains:

Including diffusion in porous 
domains:

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 second

outlet

inlet

outlet
1 second

inlet

time

 m
a
rk

e
r 

a
m

o
u
n
t (b)(a)

time

Pulse tagging experiments
• Fast pulse detection using a thermal mass flow meter

Catalysis experiments
• 4 reactor modules in tap-connection arrangement

Validation

 Minimising transport limitations 

by reducing dead zones

Figure 5 Colour coded values of the acetylene concentration cA, gas 

velocity u and differential ethane selectivity sEa.

Influence of mass transport 

Figure 4 Simulated residence time distributions of acetylene  in comparison 

to simple CSTR cascade models.

 Simple CSTR cascade models fail due to 

complex intraparticular mass transport

Residence time distributions
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Figure 6 Temperature distribution in the reactors either including or excluding pellet 

brackets assuming a typical reaction heat in the active shell under tail-end conditions.

 Isothermal behavior in both 
reactor types

Thermal conditions

Introduction
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