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Abstract: In this work we first present a general 

theoretical framework for the two-dimensional 

(2D) modeling of piezoelectric problems in 

translationally invariant three-dimensional (3D) 

systems. This 2D approach is called here the 

Generalized Plane Piezoelectric (GPP) problem. 

Then, a computational methodology is developed 

and implemented on the COMSOL Multiphysics 

software platform. Finally, as an application of 

the developed approach, we study the 

piezoelectric response in lattice-mismatched 

heterostructure (core-shell) nanowires. 
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1. Introduction 

 

    In order to analyze the piezoelectric behavior 

of materials, it is necessary to solve the coupled 

mechanical and electrical equations of piezo-

electricity. However, the numerical simulations 

of discretized electro-mechanical equations for 

3D systems are in general computationally 

expensive. Therefore, the disposal of two-

dimensional (2D) approaches to problems 

originally posed in a 3D geometry is always 

desirable, since they significantly reduce the 

computing resources and simulation time 

needed.  

   The simplest approach for approximating 3D 

piezoelectric problems into a mathematically 2D 

framework relies on the assumption that the 

displacement and electric field components 
(         )   along   (  ) axis vanish, and 

that the remaining components depend only on 

in-plane coordinates, (     )(standard Plane 

Approximation) [1]. However, there are many 

problems where the piezoelectric medium 

develops out-of-plane axial (   ) and shear (    

and    ) strain components and/or axial electric 

field component.  

 

 

(  ) that cannot be captured by the above 2D 

approach. 

 

In Sec. 2 we report on a more general 2D 

approach, based on the idea that for (indefinite) 

systems with geometry, material properties and 

boundary conditions independent of the 

coordinate   (  ), the strain and electric field  

components (    and   ) depend only on the in-

plane coordinates, (     ). Under this sole 

hypothesis, the original 3D problem can be 

reformulated into a 2D mathematical framework 

called here the Generalized Plane Piezoelectric 

(GPP) problem [2]. The GPP problem is 

expected to be a good approximation for finite 

but long 3D wire-like systems, where the 

deformation and electric field are mostly uniform 

along the    axis (except possibly near the end 

surfaces). 

In order to perform numerical calculations 

based on the GPP approach, an attractive option 

is to use the finite element method, as 

implemented, for instance, in the COMSOL 

Multiphysics software platform.  In Sec. 3 we 

give details of how to arrange the GPP problem 

in a way that can be easily implemented within 

the COMSOL software. 

    Finally, the above procedure is illustrated in 

Sec. 4 by calculating the electric fields and 

piezoelectric potential in a free-standing lattice-

mismatched core-shell nanowire. 

 

 
2. The Generalized Plane piezoelectric 

Problem 

 

We start with a summary of the general 

formulations of 3D linear piezoelectric problem 

in a domain D. Cartesian index notation 

(               and        ) and Einstein 

summation convention for repeated indices are 

used throughout the paper.  
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 The strain tensor     and the electric field     

are related to the mechanical displacement                     
and the electric potential   through the relations: 

    
 

 
(
   

   
 

   

   
)                 (1a) 

    
  

   
                        (1b) 

The equilibrium equations are given by Navier 

and Poisson equations as: 
     
   

  =     ,                         (2a) 

      
   

   
    ,                              (2b) 

where     is the stress tensor and    is the 

dielectric displacement vector. The right-hand 

terms are given by the body force    and the 

volumic charge density  .  

 

The linear fully-coupled constitutive relations for 

mechanical stress and electric displacement are 

given as [3]: 

                     ,                 (3a)          

                  ,                   (3b) 

or, schematically,  

          , 

          , 

where       are the elastic constants,      are the 

piezoelectric constants and     are the dielectric 

tensor components. 

      It can be shown that the particular problem of   

heterogeneous lattice-mismatched body con-

taining regions with different material constants 

[      ( )       ( )     ( )   and lattice para-

meters [   ( )   can be mapped to a standard 

piezoelectric problem by the introduction of 

equivalent body force   
( ) and charge 

density  ( ): 

  
( )  

 

   
[      ( )   

( )( )]    

 ( )   
 

   
[    ( )   

( )( )]    

The lattice mismatch (misfit) strain    
( )( ) is 

given as: 

   
( )( )  

  
(   )

   ( )

  ( )
       

where   
(   )

 are the parameters of a convenient 

lattice reference. In this case, the total 

deformation with respect to the local lattice is 

given by    
( )( )     

( )( )     ( ).  
      The equations (1), (2) and (3), supplemented 

with appropriate boundary conditions constitute 

the complete mathematical definition of a 3D 

linear  fully-coupled piezoelectric  problem. 

      Direct simulations of 3D problems require 

large computing resources. However, as we have 

proven in a previous work on the purely elastic 

problem [4], if certain additional conditions are 

required, the above framework can be cast into a 

mathematically 2D problem. Those conditions 

are as follows: Let us assume that we have a 

system, indefinite along one longitudinal 

direction (taken to be the       axis), whose 

transverse geometrical description (i.e., cross-

section), material properties, loads, and eventual 

boundary or interface conditions are independent 

of the    coordinate.  For such a system all the 

cross sections along the longitudinal axis can be 

considered to be at identical conditions and, 

therefore, one can make the ansatz [2]: 

                          (     ) ,                (4a) 

       (     ) .                (4b) 

By using Eq. (4) together with Eq. (1) the 

displacement and electric fields are shown to 

have the following structure [5]: 

   =   (     )  –
 

  
  

            

   =   (     )  
 

  
  

                          (5a) 

   =   (     )  (         )      
 
  =  (     )        .                                  (5b)     

 The corresponding strain can then be written as: 

       
( )

    
( )
                       (6a)  

where 

   
( )  

(
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)
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and the electric field is: 

      = 

(

 

 
  

   

 
  

   

  )

  (
 
 
   

)     ( )   ( ) .      (6b)     

   and the equilibrium equations (2) become: 

 
 

   
    

( )     
( )   =     ,          (7a)                                

     
 

   
[  

( )
 +   

( )  =    .           (7b) 
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Here,    and   are the mathematically 2D (i.e., 

dependent only on (     ) ) displacement and 

potential, C is the axial strain, A and B are 

bending strains, Ɵ characterizes the torsion of 

the system, and    is the axial electric field.  

   

   The above equations must be supplemented 

with conditions on the boundary limiting the 

cross section of the body, and boundary 

conditions at the far end surfaces    (at    
  ). These latter conditions are usually required 

not pointwise but in an integrated sense, e.g, by 

specifying the total force and torque [1]: 

   
  
               

  
                 (8a) 

   
  
                                                   (8b)  

where        are the components of the traction 

vector field at   .   

        The set of equations (5)-(7), together with 

boundary conditions (8) define a 2D problem 

where the fields    (      ) and  (     )   and 

the constants (          ), have to be 

determined. This problem is called here the 

Generalized Plane Piezoelectric (GPP) problem. 

We note that the GPP approach is able to 

accommodate any cross section geometry and 

elastic symmetry, and a wide range of 

compatible boundary conditions, corresponding 

to different kinds of externally applied stresses 

(such as hydrostatic pressure, bending 

moments...) and charges.  

The GPP problem refers of course to an 

idealized situation but, according to the Saint 

Venant principle, it is supposed to be a good 

approximation for 3D finite but long system 

fulfilling the translational invariance conditions 

mentioned above. The quality of this 

approximation is illustrated by the numerical 

simulations in Sec.4. 

 

3. COMSOL Multiphysics implementation 

 

The numerical calculations of GPP problem are 

done by using finite element method   as 

implemented in the piezoelectric module of the 

COMSOL Multiphysics software platform [6]. In 

this module the piezoelectric equilibrium 

conditions are implemented via the virtual work 

principle, leading to a weak formulation of Eq. 

(2), which can be written schematically as[7]: 

 
 
       (     )   ,                   (9a) 

 
 
     (     )                           (  ) 

Where       and       are the test functions for 

the displacement fields and piezoelectric 

potential respectively.  

      The Piezoelectric Mechanics module allows 

to use the standard Plane Strain based 

piezoelectric approximation within the Plane 

Strain application mode[7]. However, the 

antiplane displacement variable    , the strain 

   
( )
  and the out-of-plane electric field  ( ) are 

not available or easily implementable in the 

Plane Strain application mode, so it is not useful 

to make computations of the GPP problem.  

 

      We have instead implemented the GPP 

problem within the Piezoelectric module of 

COMSOL by means of the following procedure. 

First, we note that, by using Eq. (6), the weak 

condition (9) becomes: 

    (  
( )       

( )
        )                

    (  
( )       

( )
        

( )
)      (10a) 

   ( 
( )       

( )
        )                

    ( 
( )   ( )            

( )
)            (10b) 

The terms in the first line of Eq. (10a) and Eq. 

(10b) correspond to the “partial” piezoelectric 

problem associated to displacement    (     )  

and piezoelectric potential   (     ). This 

problem can be solved by using the 3D 

application mode on a finite length slice of the 

original infinitely extended system. The cross 

section is conveniently meshed. In order to force 

the dependence on (     ) we use the following 

trick: We mesh the length of the slice with only 

one quadrilateral element (what simply doubles 

the total number of elements used to mesh the 

cross section) and require periodic boundary 

conditions to connect the top and bottom 

surfaces of the slice. This trick effectively 

imposes that the numerical solutions, that is to be 

interpreted as     and  , do not depend on   . 

 However, it still remains to incorporate the 

contribution of  ( ) and  ( ) to the weak 

condition (10). This is implemented as follows: 

Since (          ) can be considered as 

additional degrees of freedom that are constant 

throughout the modeled cross section, it is 

convenient to include them in the COMSOL 
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program as extra unknown global variables [8]. 

Then, the contributions containing those 

variables in the second line of Eq. (10a) and Eq. 

(10b) are added as weak terms to the 3D problem 

related to      and   by means of the “Weak 

Contribution” feature of COMSOL [8]. 

          The boundary conditions Eq.(8) can 

eventually be implemented by making use of the 

“Weak Constraint” feature of COMSOL [8]. 

The solution of the 3D application mode 

modified as explained above gives the desired 

results for    (     )   (     )  and constants 

(          )  
 

 

 
 

 

Figure 1.  Geometry of the Hexagonal InN/GaN core-

shell nanowires investigated with details about the 

meshes employed with radius of core R1=60nm and 

Radius of shell R2=100nm.   
 

 

Table-1 Parameters used in the numerical 

calculation. 

 

 

 InN GaN 

Lattice parameter   

   (Å) 4.98 4.50 

Elastic constants   

    (GPa) 204.1 316.9 

    (GPa) 119.4 152.0 

    (GPa) 114.1 197.6 

Piezoelectric constants (C/  )   

    0.84 0.59 

Relative permittivity (   )   

   8.4 9.7 

 

 

 

4. Numerical Results 

 

In order to illustrate the GPP problem and its 

implementation in COMSOL we have performed 

numerical calculations of the electric field and 

piezoelectric potential distributions in an infinite 

hexagonal core-shell nanowire. The core is made 

of InN and the shell is made of GaN. Both 

materials exhibit cubic elastic symmetry and 

their longitudinal axes coincide with the [111] 

crystallographic direction. In Fig. 1(a) we 

display the cross section mesh used for the GPP 

problem. The X- and Y-axes are taken along 

[ ̅    and     ̅  crystallographic directions, 

respectively. We assume that the nanowire is 

free from external tractions, body forces and 

charge, so that the strain and electric field are 

solely induced by the internal lattice-mismatch 

body force   
( )

 and charge  ( ). Material 

parameters used can be found in Table I. In order 

to test the quality of our GPP approach, we have 

also performed standard 3D calculations for a 

finite but long nanowire. The longitudinal mesh 

employed is displayed in Fig. 1 (b). 

 

 
 

Figure 2.   Piezoelectric potential   (     ) obtained 

by GPP problem approach. 

 

Figure-2   shows details of the piezoelectric 

potential distribution throughout the nanowire 

cross section, as obtained within the GPP 

approach.  The highest value of piezoelectric 

potential developed is localized inside the shell 

GaN and corresponds to maximum in-plane 

potential of      =11.78V while the core InN is 

highly dominated by zero potential. 
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Figure 3. Electric field in the radial direction      
  (     ) obtained by GPP problem approach. 

 

 
 

Figure 4.   Electric field in the angular direction  
  (     ) obtained by GPP problem approach. 

 

Figures 3 and 4 show details of the electric field 

(cylindrical) components in the radial and 

angular (  (     )   and   (     )) directions 

throughout the nanowire cross section 

respectively as obtained within the GPP problem 

approach.  In the radial direction the maximum 

in-plane electric field corresponds to 

      =925.14 MV/m and is confined at the 

corners of the core-shell interface. On the other 

hand, the electric field in the angular direction 

corresponds to maximum in-plane electric field 

of       = 397.42 MV/m and is localized inside 

the shell. The electric field in the axial direction 

corresponds to   = 136.14 MV/m pointing in the 

same direction as the in-plane electric fields. 
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Figure 5. Y-axis linescan comparison of piezoelectric 

potential   (     ) obtained by GPP problem and the 

direct 3D approaches. 
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Figure 6.   X-axis line scan comparison of the Electric 

field components obtained by GPP approach and the 

direct 3D approaches. 

 

In Fig. 5 and Fig. 6 we present Y-axis linescan   

comparisons of piezoelectric potential ( )  and 

X-axis linescans of the Electric field (cylindrical) 

components (        and    ) corresponding to 

the GPP problem and to the central cross section 

of the finite 3D problem. We see that the 

agreement between the piezoelectric potential 

and electric field profiles of both approaches is 

excellent virtually indistinguishable in the figure 

thus showing the reliability of the GPP approach 

to simulate the central region of large aspect-

ratio piezoelectric problems. 
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5. Conclusions 

 
In this paper we have presented a theoretical 

framework called Generalized Plane 

piezoelectric problem (GPP) and implemented a 

computational methodology within the 

COMSOL Multiphysics software platform that 

allows efficient and inexpensive numerical 

calculations of the strain distribution in a wide 

class of translationally invariant systems. We 

have performed model simulations in a core-

shell nanowire that show an excellent agreement 

when compared with direct 3D calculations for a 

long nanowire. This agreement shows the 

reliability of the GPP approach to obtain 

efficiently accurate strain   distributions for wire-

like systems. 
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8. Appendix 

 
Appendix A. Elasticity matrix 

 

 The elasticity matrix of materials with 

zincblende structure in [001] crystallographic 

direction is given as: 

      
   

(

 
 
 

            
            
            
        
        
        )

 
 
 

 

In [111] crystallographic direction it takes the 

form:  
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Where, 

   
 =(            )/2 

   
 =(             )/6 

   
 =(             )/3 

         
 =(             )√ /6 

   
 =(             )/3 

   
 =(           )/3 

   
 =(            )/6 

 

Appendix B.  Piezoelectric coupling matrix 

 

The piezoelectric coupling matrix for zincblende 

structure in [001] crystallographic direction 

becomes: 

      
   (

   
   
   

         
     
     

)

 

 

 

In [111] crystallographic directions it takes the 

form: 
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 √    
 √    

  
    

     
     

 

     
  √    

 

    
   
   

)

 

 

 

Where    
 =   /√ . 

 

http://dx.doi.org/10.1098/rspa.1997.0143
http://dx.doi.org/10.1098/rspa.1997.0143
http://dx.doi.org/10.1098/rspa.1997.0143
http://dx.doi.org/10.1098/rspa.1997.0143
http://www.comsol.com/comsol-multiphysics

