

From Music to Non-Invasive Therapies via COMSOL Multiphysics® Models

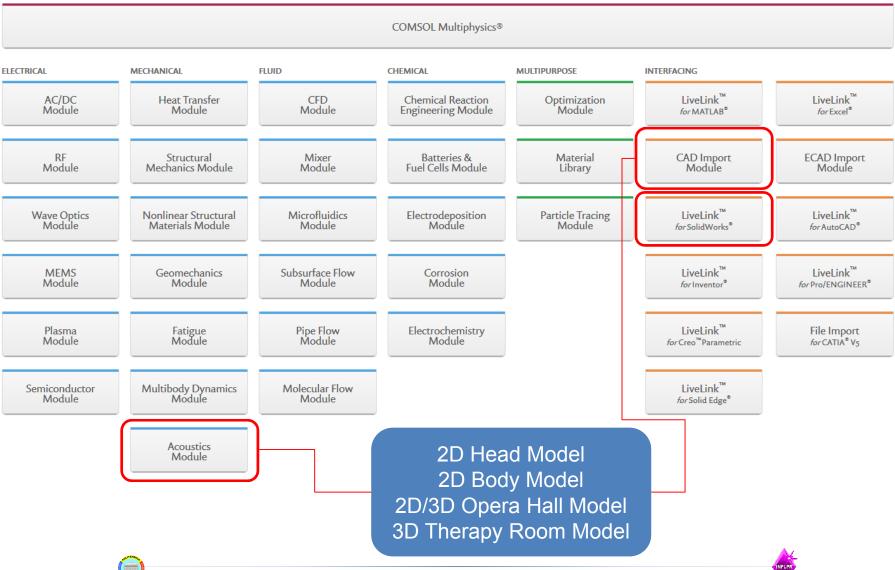
E. Lacatus^{1*}, G.C. Alecu², A. Tudor², M.A. Sopronyi³

^{1*} UPB – Polytechnic University of Bucharest; Assoc. Prof. email: <u>elena.lacatus@upb.ro</u>

²UPB – Polytechnic University of Bucharest – MEng Student

³INFLPR – National Institute for Laser Plasma and Radiation Physics;

OVERVIEW


- □ Research Problem: Acoustic Environment
- ☐ Use of COMSOL Multiphysics®
- Model Definition (M1- M5) -Computational methods
- ☐ Results (M1-M5)
- ☐ COMSOL Multiphysics ® : Support for next integrated therapeutic tools
- ☐ Conclusions: Who should "play" COMSOL each day?

Use of COMSOL Multiphysiscs®

COMSOL CONFERENCE 2014CAMBRIDGE

Use of COMSOL Multiphysiscs® (cont.)

Acoustics Module

Product Features

CAD Import Module

Product Features

- Acoustic-shell interaction
- Acoustic-solid interaction
- Acoustic-structure interaction
- Aeroacoustics
- Compressible potential flow
- Elastic waves

- Poroelastic waves
- Pressure acoustics
- Structural vibrations
- Thermoacoustics
- Thermal and viscous losses

- File import of Parasolid®, ACIS®, STEP, IGES, Inventor®, PTC® Creo Parametric™, and SolidWorks® file formats
- Encapsulate geometries to model phenomena in the surrounding domains
- Export geometry files to the Parasolid® and ACIS® file
 formats
- Convert third-party file formats to the COMSOL geometry kernel
- Detaching faces from a solid object to create a new solid object
- Cap holes or empty spaces to fill the space and create modeling domains
- Patch removed faces by growing or shrinking the surrounding surfaces to cover the removed face

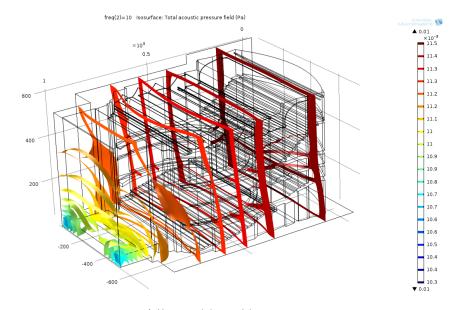
Far-field and directivity calculations

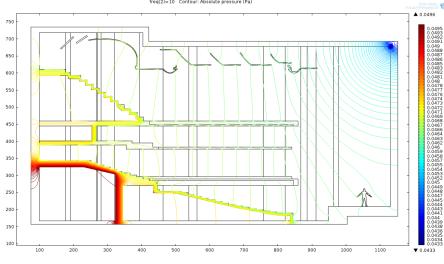
Impedance, hard-wall, and soft-wall boundaries

- Perfectly matched layers for modeling infinite domains
- Piezoacoustics
- Piezoelectric devices
- Pipe acoustics

LiveLink[™] for SOLIDWORKS[®]

Model Definition (M1-M2)

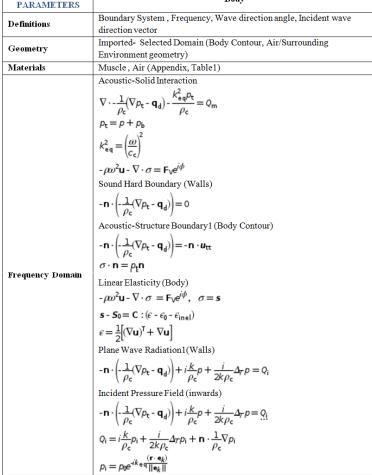

MODEL PARAMETERS	Opera Hall Opera Hall + Body
Definitions	Boundary System, Global Cartesian (Plane + Spatial) (Opera Hall + Body)
Geometry	Imported- Selected Domain (Opera Hall, Body Contour, Air/Surrounding Environment geometry)
Materials	Concrete, Wood, Muscle, Air (Appendix, Table 1)
	Pressure Acoustics
	$\nabla \cdot -\frac{1}{\rho_{c}} (\nabla p_{t} - \mathbf{q}_{d}) - \frac{k_{eq}^{2} p_{t}}{\rho_{c}} = Q_{m}$ $p_{t} = p + p_{b}$ $k_{eq}^{2} = \left(\frac{\omega}{c_{c}}\right)^{2} - k_{z}^{2}$
	$c_c = c, \rho_c = \rho$
	Sound Hard Boundary (Walls)
	$-\mathbf{n} \cdot \left(-\frac{1}{\rho_{c}} (\nabla \rho_{t} - \mathbf{q}_{d}) \right) = 0$
	Acoustic-Structure Boundary1 (Body Contour)
	$-\mathbf{n} \cdot \left(-\frac{1}{\rho_{c}} (\nabla \rho_{t} - \mathbf{q}_{d}) \right) = -\mathbf{n} \cdot \boldsymbol{u}_{tt}$
	$\sigma \cdot \mathbf{n} = p_{t} \mathbf{n}$
Mesh	Extremely fine / Number of degrees of freedom (DOF): 255944

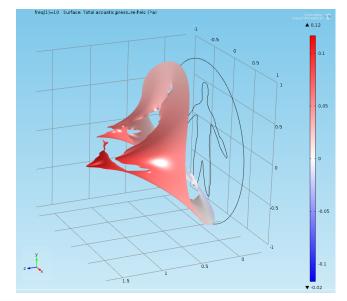

STUDY

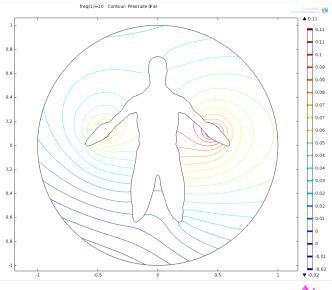
Frequency Domain	Pressure Acoustics C1_[1-100] Hz C2_[100-16000] Hz Include geometric nonlinearity
Solver Configurations	COMSOL Multiphysics – Acoustic Module

RESULTS

Plot Groups	2D Plot Group 2- Absolute Pressure 2D Plot Group 3 Sound Pressure level 3D Plot Group 4- Absolute Pressure 3D Plot Group 5 Sound Pressure level 2D Plot Group 6 – Mesh 3D Plot Group 7 – Mesh



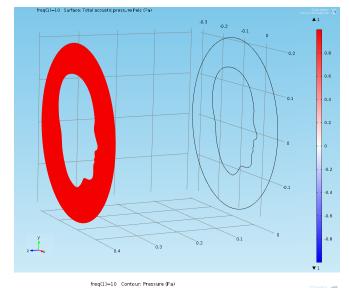

Model Definition (M3)

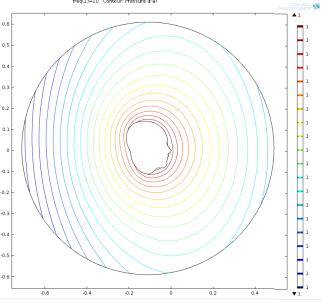

MODEL	Pode:
PARAMETERS	Body
Definitions	Boundary System, Frequency, Wave direction angle, Incident wave
	direction vector
Geometry	Imported- Selected Domain (Body Contour, Air/Surrounding
	Environment geometry)
Materials	Muscle, Air (Appendix, Table1)
Frequency Domain	Acoustic-Solid Interaction $\nabla \cdot - \frac{1}{\rho_c} (\nabla \rho_t - \mathbf{q}_d) - \frac{k_{eq}^2 \rho_t}{\rho_c} = Q_m$ $\rho_t = \rho + \rho_b$ $k_{eq}^2 = \left(\frac{\omega}{c_c}\right)^2$ $-\rho \omega^2 \mathbf{u} - \nabla \cdot \sigma = \mathbf{F}_V e^{i\phi}$ Sound Hard Boundary (Walls) $-\mathbf{n} \cdot \left(-\frac{1}{\rho_c} (\nabla \rho_t - \mathbf{q}_d)\right) = 0$ Acoustic-Structure Boundary1 (Body Contour) $-\mathbf{n} \cdot \left(-\frac{1}{\rho_c} (\nabla \rho_t - \mathbf{q}_d)\right) = -\mathbf{n} \cdot \mathbf{u}_{tt}$ $\sigma \cdot \mathbf{n} = \rho_t \mathbf{n}$ Linear Elasticity (Body) $-\rho \omega^2 \mathbf{u} - \nabla \cdot \sigma = \mathbf{F}_V e^{i\phi}, \sigma = \mathbf{s}$ $\mathbf{s} - \mathbf{S}_0 = \mathbf{C} : (\epsilon - \epsilon_0 - \epsilon_{inel})$ $\epsilon = \frac{1}{2} [(\nabla \mathbf{u})^T + \nabla \mathbf{u}]$ Plane Wave Radiation1 (Walls) $-\mathbf{n} \cdot \left(-\frac{1}{\rho_c} (\nabla \rho_t - \mathbf{q}_d)\right) + i \frac{k}{\rho_c} \rho + \frac{i}{2k\rho_c} \Delta_T \rho = Q_i$ Incident Pressure Field (inwards) $-\mathbf{n} \cdot \left(-\frac{1}{\rho_c} (\nabla \rho_t - \mathbf{q}_d)\right) + i \frac{k}{\rho_c} \rho + \frac{i}{2k\rho_c} \Delta_T \rho = Q_i$ $Q_i = i \frac{k}{\rho_c} \rho_i + \frac{i}{2k\rho_c} \Delta_T \rho_i + \mathbf{n} \cdot \frac{1}{\rho_c} \nabla \rho_i$ $\rho_i = \rho_i e^{ik} \frac{e^{(\mathbf{r} - \mathbf{e}_k)}}{ \mathbf{q}_e } _{\mathbf{q}_e}$
Mesh	Extremely fine Number of degrees of freedom (DOF): 154949-Upper Left source

STUDY

Frequency Domain	Acoustic-Solid Interaction [100-16000] Hz
Solver Configurations	COMSOL Multiphysics – Acoustic Module

Model Definition (M4)


MODEL PARAMETERS	Head
Definitions	Boundary System, Global Cartesian
Geometry	Imported - Selected Domain (Brain, Fluid Buffer, Muscle, Skull, Air/Surrounding Environment geometry)
Materials	Brain , Fluid Buffer, Skull, Muscle, Air (Appendix, Table 1) Pressure Acoustics
Frequency Domain	$\nabla \cdot -\frac{1}{\rho_{c}} (\nabla p_{t} - \mathbf{q}_{d}) - \frac{k_{eq}^{2} p_{t}}{\rho_{c}} = Q_{m}$ $p_{t} = p + p_{b}$ $k_{eq}^{2} = \left(\frac{\omega}{c_{c}}\right)^{2} - k_{z}^{2}$ $c_{c} = c, \rho_{c} = \rho$
Mesh	Extremely fine Number of degrees of freedom (DOF): 961765 (A1) –Frontal source 962861 (A2)- Upper Left source


STUDY

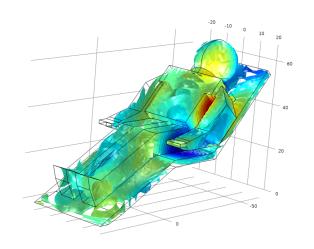
	Pressure Acoustics
F D	A1_[6-20] Hz
Frequency Domain	A2_[100-16000] Hz
	Include geometric nonlinearity
Solver Configurations	COMSOL Multiphysics – Acoustic Module

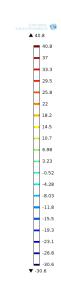
RESULTS

Plot Groups	Acoustic Pressure (acsl)	
	Sound Pressure Level (acpr)	
	2D Plot Group 3- Absolute Pressure	
	2D Plot Group 4 – Instantaneous local velocity	
	2D Plot Group 5 Sound Pressure Level	
	2D Plot Group 6 – Mesh	

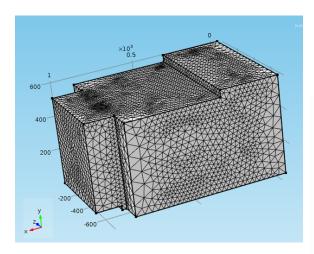
Model Definition (M5)

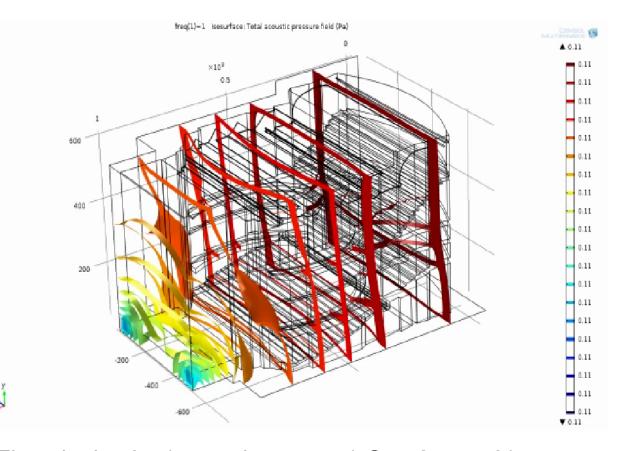
MODEL	Relaxing
PARAMETERS	Therapy Room
Definitions	Boundary System, Global Cartesian (Spatial) (Therapy Room + Body)
-	Imported- Selected Domain (Therapy Room, Body Contour,
Geometry	Air/Surrounding Environment geometry)
Materials	Concrete, Wood, Muscle, Air (Appendix, Table1)
Frequency Domain	Pressure Acoustics $\begin{aligned} & p_{t} = \rho + \rho_{b} \nabla \cdot - \frac{1}{\rho_{c}} (\nabla \rho_{t} - \mathbf{q}_{d}) - \frac{k_{eq}^2 \rho_{t}}{\rho_{c}} = Q_{m} \\ & k_{eq}^2 = \left(\frac{\omega}{C_{c}}\right)^2 - k_z^2 \\ & c_{c} = c, \rho_{c} = \rho \\ & \text{Sound Hard Boundary (Walls)} \\ & - \mathbf{n} \cdot \left(-\frac{1}{\rho_{c}} (\nabla p_{t} - \mathbf{q}_{d}) \right) = 0 \\ & \sigma \cdot \mathbf{n} = \rho_{t} \mathbf{n} \\ & \text{Acoustic-Solid Interaction} \end{aligned}$ $\nabla \cdot - \frac{1}{\rho_{c}} (\nabla p_{c} - \mathbf{q}_{d}) - \frac{k_{eq}^2 p_{t}}{\rho_{c}} = Q_{m} \\ & \rho_{t} = \rho + \rho_{b} \end{aligned}$ $k_{eq}^2 = \left(\frac{\omega}{c_{c}}\right)^2 \\ & - \rho \omega^2 \mathbf{u} \cdot \nabla \cdot \sigma = \mathbf{F}_{v} e^{i\phi} \\ & \text{Linear Elasticity (Body)} \\ & - \rho \omega^2 \mathbf{u} \cdot \nabla \cdot \sigma = \mathbf{F}_{v} e^{i\phi}, \sigma = \mathbf{s} \\ & \mathbf{s} \cdot \mathbf{S}_0 = \mathbf{C} : (\epsilon \cdot \epsilon_0 - \epsilon_{inel}) \\ & \epsilon = \frac{1}{2} [(\nabla \mathbf{u})^T + \nabla \mathbf{u}] \\ & \text{Spherical Wave Radiation1} \\ & - \mathbf{n} \cdot \left(-\frac{1}{\rho_{c}} (\nabla p_{c} \cdot \mathbf{q}_{d}) \right) + \left(i k_{eq} + \frac{1}{r} \right) \frac{\rho 2}{\rho_{c}} - \frac{r \Delta_{T} \rho 2}{2\rho_{c} (1 + i k_{eq} f)} = Q_{i} \end{aligned}$
Mesh	Extremely fine / Number of degrees of freedom (DOF): 114864


DICDI	
	Pressure Acoustics
E D	D1_[1-100] Hz
Frequency Domain	D2_[100-16000] Hz
	Include geometric nonlinearity
Solver	COMBOI Multipluming Associa Madula
Configurations	COMSOL Multiphysics – Acoustic Module


RESILTS

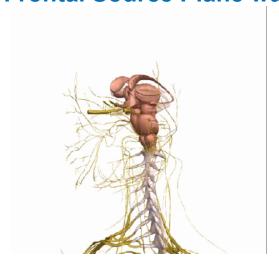
	KESULIS	
	Plot Groups	Acoustic Pressure (acpr)
		Sound Pressure Level (acpr)
		Acoustic Pressure-Isosurfaces (acpr)
		3D Plot Group 4 –Absolute Pressure-Isosurface
		3D Plot Group 5 Local acceleration (spatial)
		3D Plot Group 6 – Mesh

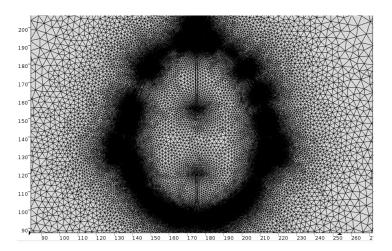


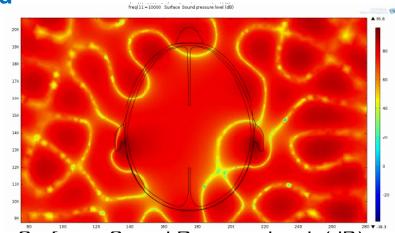

Results of COMSOL Multiphysiscs® use:

- User controlled mesh
- Number of degrees of freedom solved for DOF 848439

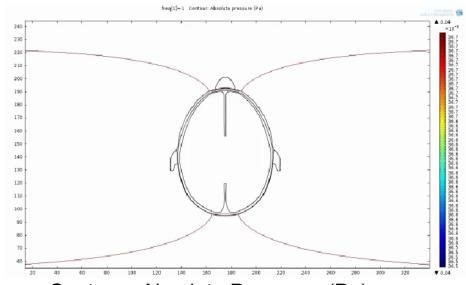
2D Plane waves on Concert Hall


Flow dual point (acoustic sources) Qv= 2e-4 m3/s f= [10-16000] Hz



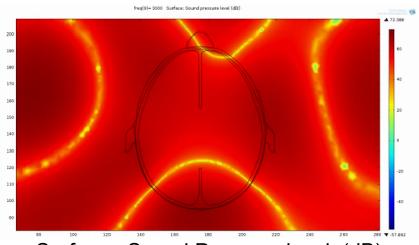


Results of COMSOL Multiphysiscs® use: **2D Frontal Source Plane waves on Head**

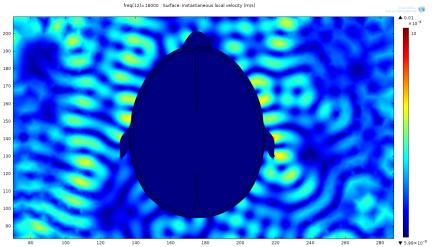


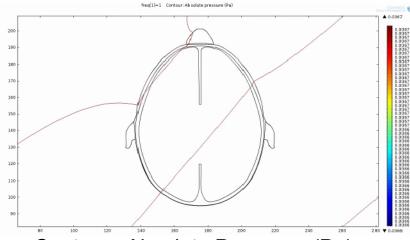
- Physics controlled mesh
- Mesh extremely fine DOF 961765

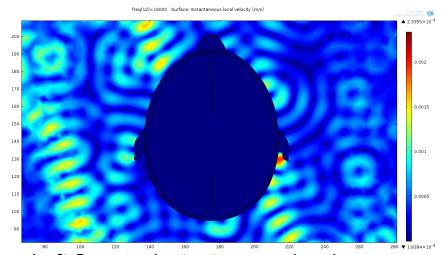
Surface: Sound Pressure level (dB)



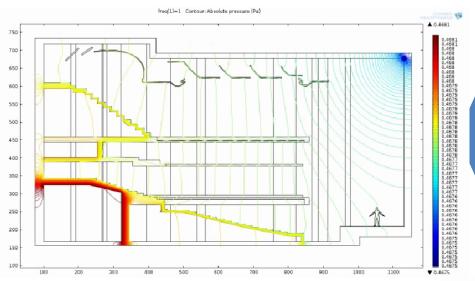
Contour : Absolute Pressure (Pa)



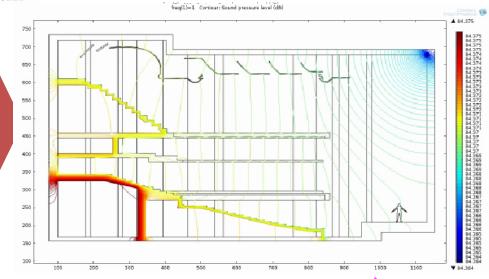

Results of COMSOL Multiphysiscs® use: 2D Up -Left Source Plane waves on Head


Surface: Sound Pressure level (dB)

Front Source: Instantaneous local Pressure yelocity (m/s)

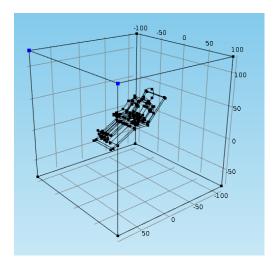

Contour : Absolute Pressure (Pa)

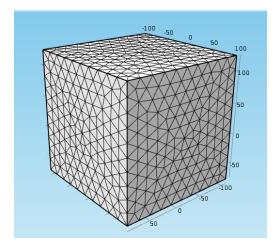
Left Source: Instantaneous local Pressure velocity (m/s)

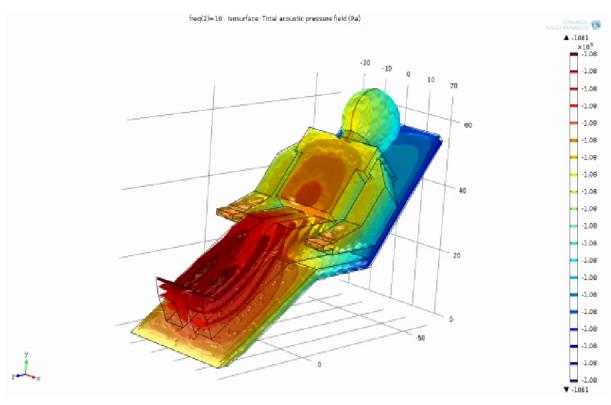


Results of COMSOL Multiphysiscs® use: 2D Up -Left Source Plane waves on Opera Hall

OPERA HALL 2D MODEL + BODY
Module: Pressure ACOUSTICS
Sound Pressure level (dB)
Frequency Domain [1-16000] Hz
Mesh Extremely Fine; DOF 255944


OPERA HALL 2D MODEL + BODY
Module: Pressure ACOUSTICS
Absolute Pressure (Pa)
Frequency Domain [1-16000] Hz
Mesh Extremely Fine; DOF 255944

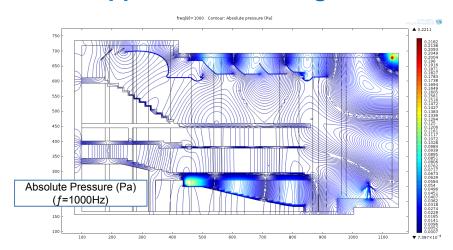


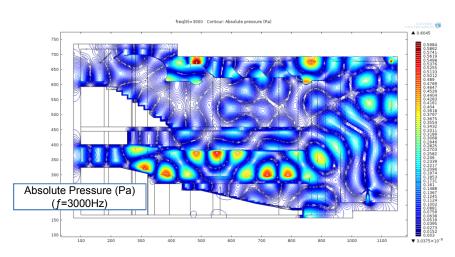


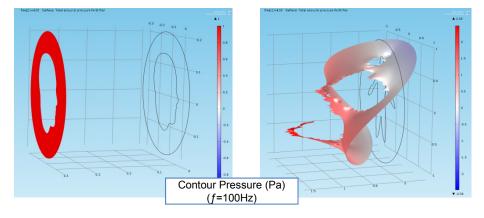
Results of COMSOL Multiphysiscs® use: Vibration Therapy

- Spherical waves propagation
- Free space reference power (RMS): PRMS=2e-6 W

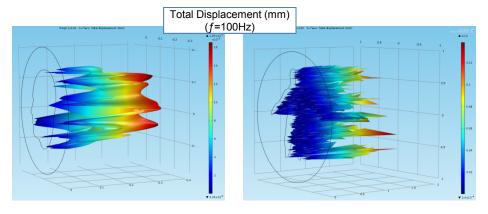
Monopole Point Source (armchair embedded) f = [1-16000] Hz


- Physics controlled mesh
- Mesh extremely fine DOF 114864



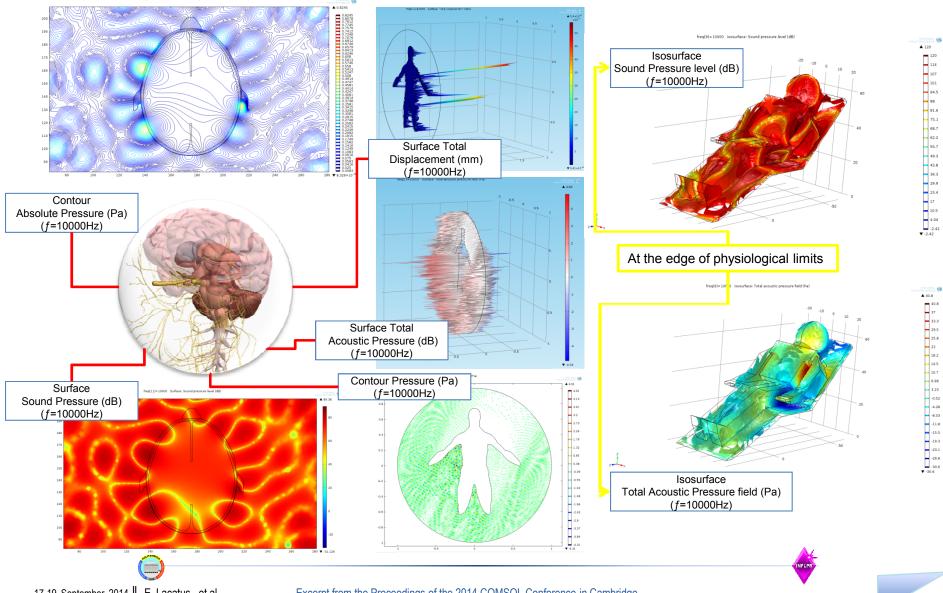

COMSOL Multiphysics ®:

Support for next integrated therapeutic tools – (Music = Acoustic Therapy)



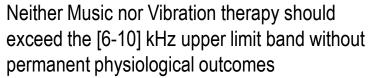
The best places from the Opera Hall are effective only up to frequencies below 3 kHz

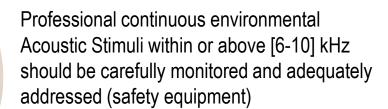
Orchestra Conductor's body would be acoustically impacted at a higher level than the bodies from the audience, but all those attending the event will be impacted by the dynamic-nonlinear distribution of the acoustic field

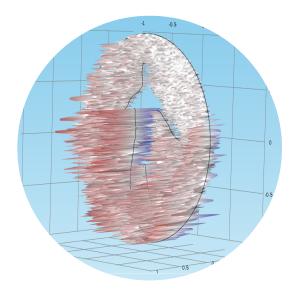


COMSOL Multiphysics ®:

Support for next integrated therapeutic tools -Safety Thresholds




Conclusions: Who should "play" COMSOL each day?


At the edge of physiological limits (6-10kHz) very short exposure time to such stimuli
Limits may be reached during a concert, but should not be the prevalent acoustic signal of the environment

The entire body is exposed to environmental acoustic stimuli!

Improper use of earphones for musical audition may reach similar results with the professional unsafely acoustic exposure

Thank you!

Q & A

