

Modelling bioclogging effects in Constructed Wetlands for wastewater treatment

Roger Samsó, Nicolas Forquet, Pascal Molle and Joan García

roger.samso@irstea.fr

Intensive WWTPs

Extensive WWTPs

(based on Constructed Wetlands (CWs))

Impermeable basin
Filled with a porous media (gravel)
Planted with aquatic macrophytes
Fed with wastewater

Main operational problem of CWs

High load of OM and nutrients

High bacterial yields

Biological clogging

Objective

To build a **bioclogging** model for **unsaturated** porous media to simulate clogging development and the subsequent **overland flow** in Constructed Wetlands

Model description

2D domain (longitudinal section of a CW)

Bioclogging Model (Rosenzweig et al., 2009)

Bioclogging model (Rosenzweig et al., 2009)

Initial pore size distribution

$$r = -\frac{2\sigma\cos\beta}{\gamma h}$$

$$N_i = \frac{\Delta \theta}{\pi r_i^2}$$

Bacteria volume fraction

Microbial effective saturation

Biofilm-affected pore size distribution

$$r_{b,i} = r_{f,i} \sqrt{1 - S_{em}}$$

$$N_{b,i} = N_{f,i}$$

Relative permeability (Hagen-Poiseuille)

Unsaturated, biofilm-affected flow

$$k_b(\theta_{w,j}) = \frac{\sum_{i=1}^{j} N_{b,i} r_{b,i}^4}{\sum_{i=1}^{M} N_{f,i} r_{f,i}^4}$$

Saturated, biofilm-free flow

Numerical experiment

- Two simulations of 30 days
 - Simulation 1: considering clogging
 - Simulation 2: neglecting clogging

Comparison of different model outputs

Results (1/3): Porosity occupation

Results (2/3): Bacteria distribution

Results (3/3): Overland vs Subsurface flow

Conclusions

- A new study of bioclogging in unsaturated porous media
- Bioclogging changes bacterial distribution and causes overland flow, reducing CWs lifespan
- Still a work in progress

Further development

The model of Rosenzweig et al. (2009) does not include tortuosity!

$$k_b(\theta_{w,j}) = \frac{\sum_{i=1}^{J} N_{b,i} r_{b,i}^4}{\sum_{i=1}^{M} N_{f,i} r_{f,i}^4}$$

- Overland flow will be described using the shallow water equations (Saint Venant equations)
- Uncertainty, sensitivity, verification and calibration
- More functional bacterial groups and processes will be included

SWINGS PROJECT

Safeguarding Water resources in India with Green and Sustainable technologies

Aim: to enhance optimized municipal WW treatment concepts by combining green and sustainable technologies for enhancing water recycling and reuse, decreasing energy demand and utilising beneficial byproducts from the process as a secondary resource.

Tasks:

- Construction and on-site optimization of Anaerobic digester-Constructed wetland systems.
- Disinfection systems and pathogen monitoring techniques.
- Water reuse (e.g. aquaculture, irrigation, etc.).

Thank you!

roger.samso@irstea.fr

