

Modeling Directed Self-Assembly of Block Copolymers for Lithographic applications

Antoine Fouquet

leti Outline

The DSA technology for nano patterning

Modeling with Comsol phase field interface

Some results & applications

Leti Context

A full silicium patterned wafer

Limitations of conventional optical lithography due to resolution (λ=193nm)

Nano patterning for chip fabrication → Lithography step

Optical lithography: principle schematic

Leti DSA technology principle

Annealing → Selfassembly in ordered 2phases structures

Change morphology by tuning material's properties

chain's length N

Block ratio f

Segregation strength x

Leti DSA by grapho-epitaxy

« Contact doubling »

« Contact shrink »

193nm or e-beam litho pattern

BCP self-assembly

Leti Modeling of DSA

- Purpose:
 - Metrology not sufficient (lack of resolution)
 - Development cost
- Requirements:
 - Good runtime, especially for 3D for parametric studies
 - Proper boundary conditions for dealing w/ interfaces
- Choice of the model:
 - not atomistic or particle model (too slow)
 - phase field model :
 - describe system through order parameter

Leti Comsol phase field interface

- Cahn-Hilliard equation
 - → phase separation of a binary mixture
- Free energy

$$E = \int_{\Omega} \left(\frac{\phi^4}{4} - \frac{\phi^2}{2} \right) d\mathbf{r} - \int_{\Omega} \epsilon^2 ||\nabla \phi||^2 d\mathbf{r} + \int_{\Omega} \int_{\Omega} \alpha (\phi(\mathbf{r}) - \phi_0) (\phi(\mathbf{r}') - \phi_0) G(\mathbf{r}, \mathbf{r}') d\mathbf{r}' d\mathbf{r} \right)$$

Mixing energy

Interfacial energy

Long range interactions

Added in weak formulation

Comsol phase field interface

Fick's law

$$\frac{\partial \phi}{\partial t} = \Delta \mu \qquad \text{with} \quad \mu = \frac{\delta E}{\delta \phi} \quad \text{the chemical potential}$$

• Finally $\frac{\partial \phi}{\partial t} = \Delta \left(\phi^3 - \phi - \epsilon^2 \Delta \phi\right) - \alpha (\phi - \phi_0)$

$$\mathbf{n}.\nabla\mu=0$$

$$\mathbf{n}.\nabla\phi = -\cos\theta$$

Contact angle

• Initial conditions : small fluctuations around $\phi_{\scriptscriptstyle \Omega}$

Leti Simulation VS experimental data

Free surface simulations

SEM images

2D

3D

Good agreement!

Leti Guide's commensurability

Leti Affinity impact

By changing contact angle θ we can change the affinity of interfaces

neutral

Preferential affinity

Study impact of a different surface energy

Leti Contact multiplication

OPC simulated patterns

Corresponding 3D simulations

Pattern optimization

Leti Summary

Good qualitative agreement

Comsol phase field interace is suitable for modeling DSA

- Perspectives
 - Full Calibration
 - More interesting studies!