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Abstract: In this paper an analysis and 
discussion of COMSOL capabilities for the 
modelling of sensors embedded in concrete 
structures is presented. Concrete is a very 
complex material to be analysed, because of 
many inherent peculiarities, most of them time-
dependent. In this work, COMSOL is used to 
model two of the most relevant phenomena that 
arise in concrete materials (viscoelastic creep and 
shrinkage) and their impact on the mechanical 
properties of a sensor embedded in it; in 
particular the simulation results of a prototypal 
pressure sensor embedded in concrete for 
Structural Health Monitoring (SHM) is 
presented. 
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1. Introduction

A growing demand is recently emerging of 
sensors suited to be integrated in the concrete in 
order to measure some critical parameters, such 
as pressure, humidity and temperature. For 
example, by monitoring the pressure in various 
strategic points of the structure and their 
evolutions over time it is possible to understand 
the health of the structure and the needs for 
maintenance intervention.  

Concrete behaviour need special numerical tools 
to be properly modelled. For this reason, some 
Finite Element Method (FEM) modelling 
software have been specifically developed for the 
simulation of concrete structures. On the other 
side, an appropriate design of a silicon sensor 
asks for a detailed micro-electromechanical 
investigation of its behaviour when an external 
load is imposed; such an investigation is 
generally performed by means of dedicated 
simulation tools, with Multiphysics capabilities. 

The design of a micromechanical sensor in 
concrete materials invokes for the simultaneous 
modelling of a concrete material, a high 
performance silicon microelectromechanical 
device and their interaction. This is a very 
challenging system, which we could successfully 
model thanks to the flexibility of the COMSOL 

software and its Equation-based modelling 
approach. 

2. The problem of concrete 
modelling

Concrete structures are a very demanding 
benchmark for numerical modelling tools. In fact 
some of the most relevant mechanical properties 
(such as the Young modulus) of concrete are 
time-dependent, as a consequence of 
chemical/physical phenomena happening during 
the concrete curing (i.e., the hydration process 
that occurs after the concrete has been placed, 
which allows calcium-silicate hydrate (C-S-H) to 
form and then provides concrete optimal strength 
and hardness) and its following aging. Two of 
the most important inherent properties of 
concrete are creep and shrinkage. 

Concrete is a viscoelastic material. As a 
consequence, when it is subjected to a step 
constant stress, it experiences a time-dependent 
increase in strain. This phenomenon is known as 
viscoelastic creep. Concrete that is subjected to 
long-duration forces is prone to creep.  

The stress dependent strain ( )0,ttcσε  at time t 

(in days) may be expressed as: 
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In this equation J(t,t0) is the creep function or 
creep compliance, representing the total stress 
dependent strain per unit stress; Eci(t0) is the 
modulus of elasticity at the loading time t0 
(expressed in days); hence 1/Eci(t0) represents the 
initial strain per unit stress at loading. Eci is the 
modulus of elasticity in MPa at an age of 28 
days. 

The Creep Function of concrete can be 
calculated according to the concrete equation 
theory, for given concrete class, sample size and 
humidity conditions, and after specifying the 
concrete age at the loading instant1.  

The second important phenomenon emerging in 
concrete structures is concrete volumetric 
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change, even in steady temperature conditions. 
The change occurring without any thermal 
exchange with the environment is referred to as 
concrete shrinkage, and it is the global result of 
both autogenous deformation εcas(t) and drying 
shrinkage εcds(t): 

( ) ( ) ( )tttt cdscasscs εεε +=,  

The parameter ts represents the concrete age at 
the beginning of drying (in days). Autogenous 
deformation (which can be an expansion or a 
shrinkage) takes place during concrete curing 
and it is caused by the chemical process of 
cement hydration. After curing, concrete shrinks 
as the water not consumed by cement hydration 
gradually leaves the system. This phenomenon is 
known as drying shrinkage. It generally 
represents the most relevant contribution to the 
total shrinkage.  

Concrete total shrinkage can be expressed as a 
time-dependent function, assuming as equation 
parameters the concrete class, the sample size, 
the humidity conditions and the concrete age at 
the beginning of the drying process. 

 

2.1. Numerical modelling of concrete 
viscoelasticity with COMSOL 

The first phenomenon we tried to numerical 
model is concrete viscoelasticity. The modelling 
of viscoelasticity is one of the most relevant 
steps for a reliable analysis of a concrete 
structure and its embedded sensors. 

Experimental viscoelastic properties can be 
described by different theoretical models, such as 
the Standard linear solid model, Kelvin-Voight 
model, Generalized Maxwell model, the Kelvin 
chain model. Each one of them has a specific 
field of applications. In particular, generalized 
Maxwell model and Kelvin chain model both 
consist of various “branches”, composed of 
springs and dampers with different types of 
connections among them. These models with 
multiple branches (and therefore containing 
many parameters and many time constants) are 
often very useful in the modelling of a given 
viscoelastic behaviour over a long observation 
time. 

Generalized Maxwell chain is particularly 
suitable to the description of stress Relaxation 
phenomena (stress decrease in viscoelastic 
material under constant strain) while Kelvin 
Chain is the preferred model for the description 
of Creep phenomena (strain increase under 
constant stress).2 As in concrete creep 

phenomena are the most widely observed and 
investigated, in the classical theory of concrete 
the Kelvin chain approach has been adopted, and 
Kelvin chain parameters (obtained by a fitting 
procedure of theoretical creep function) for 
different types of concrete are also available. For 
these reasons, modelling concrete by means of 
Kelvin chain is a more convenient and 
recommended choice. 

Kelvin chain is not a built-in model of 
COMSOL. Nevertheless, considering that it is 
the elective model for concrete viscoelasticity, 
we decided to build this new 
mathematical/material model, exploiting its 
Equation-based Modelling capability. 

In a general multiaxial case, the generalized 
Kelvin model can be represented with an elastic 
spring (characterized with a shear modulus G0) 
to provide the instantaneous stiffness, plus n 
Kelvin-Voigt branches connected in series, each 
one consisting of a spring (with modulus Gi) 
and a damper (with viscosity coefficient ηi). A 
sketch of the generalized Kelvin model is 
reported in Fig.1.  

 

 

Figure 1 Sketch of the generalized Kelvin model 

 

It can be demonstrated that, by using a 
generalized Kelvin model, the specific creep 
function is, for a loading instant t0: 
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The parameter τi is the retardation time per 
branch, i.e. an estimate of the time required for 
the creep process to approach completion, with 
reference to the i-th branch. The creep function 
of the Kelvin model can be easily adjusted to 
model real systems behaviour, thanks to its 
2n+1 parameters, which can act as fitting 
parameters in case experimental data for the 
creep are available.  

In such a model, the stress at each unit is the 
same external stress, whereas the total strain is 
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the sum of the elastic strain of the first spring 
plus the strains of the branches: 
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In particular, in order to model the concrete 
viscoelasticity of a realistic concrete specimen, 
with given class, size, and humidity conditions, 
we used 8 Kelvin branches. It can be 
demonstrated2 that each Kelvin-Voight branch 
obeys a differential equation relating the stress 
to the strain and its derivative; in the multiaxial 
stress case, the differential equation has the 
following expression: 

dev

i

iii G
σεετ

2
1=+&

  

In this equation, �dev is the deviatoric stress 
tensor. 

The COMSOL model we built was able to 
accurately compute viscoelastic effect by 
solving the strains in the viscoelastic branches 
with the Domain ODEs (Ordinary Differential 
Equations) and DAEs (Differential Algebraic 
Equations) interface.  

In building the COMSOL model of the concrete 
sample, no defined material was assigned to the 
domain, and eight stiffness moduli and eight 
retardation times (one for each branch of the 
chain) were fed into the model as user-defined 
variables. The procedure consisted, then, in 
setting up and solving, for each Kelvin-Voigt 
branch, a first-order Ordinary Differential 
Equation (ODE) for the auxiliary strains εi. In the 
Domain ODEs and DAEs interface, a differential 
equation having the following expression can be 
directly implemented: 

f
t

u
d

t

u
e aa =

∂
∂+

∂
∂

2

2

  

In the Kelvin model case, for each branch of the 
chain such an equation has to be solved, with 
σdev-2Giεi playing the role of the source term f, 
2Giτi representing the damping coefficient da, 
whereas the mass coefficient ea is zero.  

As a first step, in order to validate our model, 
we selected a very simple system, a concrete 
cylinder under uniaxial pressure, whose exact 
mathematical solution can be calculated from 
theory.1 In particular, we computed the creep 
function for a concrete with a fck (specified 
characteristic cylinder compressive strength) of 
48MPa, considering a specimen in the shape of a 
cylinder 7cm height and 7 cm diameter, and 

assuming 50% of environmental relative 
humidity. We then also built a COMSOL model 
for the same system, and we compared 
simulation output for creep with the trend 
obtained from theoretical model. The 
comparison showed a perfect agreement (Fig.2). 

 

 

Figure 2 Comparison between COMSOL simulations 
of a creep experiment, based on a Kelvin-chain 
modelling of the material viscoelasticity, and the 
theoretical results computed according to the 
ModelCode equations. In the simulations, a constant 
load of 1MPa is applied. 

 

Table 1 Kelvin chain parameters using for the 
modelling 

Branch 
number 

Shear modulus 
Gi [MPa] 

Retardation 
time τi [s] 

0 7254  
1 25388 5E+02 
2 36268 5E+03 
3 29015 5E+04 
4 18134 5E+05 
5 10881 5E+06 
6 14507 5E+07 
7 21761 5E+08 
8 21761 5E+09 

 

 

2.2. Numerical modelling of shrinkage 
with COMSOL 

Time-dependent concrete shrinkage can be easily 
modelled in COMSOL by adopting a strategy 
based on the analogy with thermal phenomena. 
Once the shrinkage profile of concrete has been 
calculated using suitable equations1, we 
conferred a unitary thermal coefficient to the 
material, then we input into the model a 
temperature profile T that was exactly retracing 
the calculated shrinkage trend versus time. The 
resulting “thermal” strain, calculated in 
COMSOL by means of the following equation, 
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was supposed to exactly imitate the actual 
shrinkage strain. 

( )refth TT −= αε  

In this equation, α is the thermal expansion 
coefficient (that we fixed as having a unitary 
value) and Tref is a conventional reference 
temperature for the thermal simulation. 

First of all we applied our method on the simple 
benchmark structure already used for testing the 
creep model (that is a concrete having fck of 
48MPa, considering a specimen in the shape of a 
cylinder 7cm height and 7 cm diameter, and 
assuming 50% of environmental relative 
humidity). We exactly computed and modelled 
the shrinkage strain, obtaining a perfect 
agreement, as shown in Fig.3. 

 

Figure 3 Comparison between the computed 
shrinkage strain of the concrete sample (according to 
the theoretical model of concrete in ModelCode) and 
the simulated strain. The simulated time was about 
1500 days. 

 

3. Analysis of a membrane pressure 
sensor in a concrete material 

Once our model for concrete had been validated, 
both as for the viscoelastic behaviour and the 
shrinkage, it could be profitably used to describe 
concrete in more complex simulations. In 
particular, we were interested in the analysis of 
the system consisting of a concrete structure and 
a silicon sensor embedded in it.  

We can expect that concrete viscoelasticity and 
shrinkage would impact on any sensor embedded 
in a concrete structure, anyway the role of these 
phenomena acquires a pivotal importance when 
pressure sensors for concrete are concerned. We 
therefore decided to use our COMSOL model 
for concrete to study the effect of concrete on 
an embedded sample of silicon, with a 
membrane (Fig.4), which could represent a 
simplified sensor structure for pressure 
measurements, provided that stress-sensing 

elements, for example four piezoresistors 
connected in a Wheatstone bridge,3 are 
conveniently fabricated on it.  

 

Figure 4 (a) Geometry of the simulated system, 
representing a sensor structure embedded in a 
viscoelastic concrete cylinder. (b) Zoom of the 
previous picture, highlighting the axial displacement 
in the sensor. 

 

The sensor prototype has a cylindrical shape, 
with 2mm diameter, 600µm height. The sensing 
part of the structure is the membrane, which is 
10µm thick and 700µm radius. Internal cavity is 
50µm deep. A constant pressure load of 10MPa 
is applied on top of the concrete cylinder. We 
used the Structural Mechanics module to develop 
our model.  

In a first step, we applied only creep equations to 
our model, excluding shrinkage strain. We 
observed that concrete creep strongly modifies 
the membrane displacement over time, even if a 
constant load is applied. In particular, we can 
see that the difference between the 
displacement at the membrane centre and the 
one at its edge (Fig. 5), which is a measure of 
the membrane actual deformation, changes from 
the initial value of about -0.42µm to the final 
value (after 370 days of constant load on the 
concrete sample) of about -0.87µm, then more 
than doubling its value. 

 

(a) 

(b) 
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Figure 5 Difference between the vertical displacement 
at the membrane centre and the one at its edge, for a 
constant load of 10MPa on top of the concrete 
cylinder.  

 

We decided to investigate the possible 
correlation with a creep-induced change in the 
stress state of the membrane. In fact, we could 
observe that the stress increases over time. This 
is shown, for example, in the 3D plots (at t=0 
and at t=370days) of the radial component of 
the stress (Fig. 6, where the same scale range is 
used for comparison). 

 

 

 

Figure 6 Radial stress distribution on the sensor inside 
concrete, (a) at the beginning of the time span, when 
there is only the instantaneous effect of the external 
load, and (b) at the end, when creep has modified the 
stress distribution 

 

In more detail, the line plots of Fig. 7 show the 
radial and the angular components of the stress 
along a radius of the membrane (from x=0, 
centre of the membrane, to x=0.7mm, edge of 
the membrane), at the beginning and at the end 

of the creep process. Both components vary 
during time, because of the creep effect. 
Assuming that piezoresistors are fabricated on 
the membrane, we will then observe a time 
dependent, creep-induced variation of the 
sensor output. The relative weight of the two 
stress component variations on the sensor 
output will depend on the actual position of 
piezoresistors. For example, very close to the 
membrane edge the radial stress would give the 
major contribution. 

 

 

 

Figure 7 (a) Plots at t=0 and at t=370 days of the 
radial stress along a radius (from x=0, centre of the 
membrane, to x=0.7mm, edge of the membrane). The 
variation is only due to the creep effect (as a constant 
load is applied). (b) The same for the angular stress.  

 

The membrane behaviour is also affected by the 
other typical concrete phenomenon considered 
in this study, which is its shrinkage. In our 
simulation conditions, when shrinkage is added 
in the previous model (which was taking into 
account only the creep), there is only a small 
modification of the deformation of the 
membrane at its centre, in fact the difference 
between the centre and the edge displacements 
reaches the final value of about -0.90 µm (very 
close to the value we obtained considering only 
creep). The shrinkage has a more relevant 
impact on the stress distribution. It can be seen 
by comparing, at the end of the time range, the 
two (radial and angular) component stress 
distributions for the two cases (with or without 
shrinkage), as shown in Fig. 8. 

(b) Angular stress component 

(a) Radial stress component 

(a) 

(b) 

t=3.1987E7s 

t=0 
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Figure 8 (a) Comparison of the radial stress along a 
radius of the membrane, at the end of the time span, 
when only creep is considered or when also shrinkage 
is included. (b) The same for the angular stress. 

 

We observe that, with respect to the case in 
which only creep is considered, both radial and 
angular stress have a modified distribution on 
the membrane. So, a shrinkage-induced impact 
on the sensor output is expected too. Also in 
this case, piezoresistors exact locations will 
determine the effective contribution of the two 
stress components to the shrinkage-induced 
output variation. Anyway, angular stress is 
everywhere more affected by the shrinkage 
effect than the radial stress. 

As a whole, both creep-induced and shrinkage-
induced changes in the membrane deformation 
and stress are observed. They would necessarily 
impact on the output of the membrane-based 
pressure sensor, modifying the output voltage of 
a Wheatstone bridge of piezoresistors, located 
on the membrane itself. A quantitative 
evaluation of the viscoelastic and shrinkage 
effects on the sensor, as COMSOL enabled us 
to do, is then critical for a reliable design of a 
pressure sensor. 

 

4. Conclusions 

In our study, we tried to implement a COMSOL 
model for an analysis of the main concrete 
properties. COMSOL, thanks to its multiphysics 
capabilities, allows the modelling different kinds 

of sensor functionality; being able to use 
COMSOL also to model concrete peculiarities 
would provide a complete tool for simulating 
various types of sensors in concrete structures. 

We were able to build COMSOL models for two 
fundamental concrete properties, in particular 
viscoelasticity and total shrinkage. Simulations 
on a concrete sample show similar results to the 
theoretical model. They allowed a preliminary 
evaluation of the effects of concrete properties 
on the functionality of a MEMS sensor, which is 
an essential step for a reliable design of the 
sensor itself. 

Our next step will be trying to implement in 
COMSOL the superposition principle, in order to 
model the case of a time-dependent applied load 
and, also, in order to effectively take into account 
time-dependent rearrangements of the internal 
stresses which can take place even in case of 
constant load. The superposition principle is 
generally assumed to be valid for concrete, in 
fact concrete can be considered as an aging linear 
viscoelastic material for many practical 
applications. On the basis of this assumption, the 
general constitutive equation for the stress 
dependent strain ( )0,ttcσε  in concrete may be 

written, according to the superposition principle, 
as:1 
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We will investigate the possibility of modelling 
such a constitutive equation with COMSOL. 
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