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The ROFIN Group
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… is one of the leading manufacturers of laser sources and 
laser-based solutions for industrial materials processing.

Macro
The Power of Light
 Hamburg/Germany
 High-powered industrial material processing

Micro 
Focus on Fine Solutions
 Starnberg/Germany
 Laser sources and systems for processing 

materials down to the micro range 

Marking
The Mark of Excellence
 Bergkirchen/Germany 
 Marking solutions that consistently fulfill customer requirements 

in regards to precision, individuality and economic efficiency
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Application Examples
Cutting (Metal & Non-Metal)

3D Modeling of a planar Discharge - COMPANY CONFIDENTIAL 3

Dieboards Airbag fabrics 

Acrylic Tableware
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ROFIN Product Portfolio
Macro – The Power of Light

Laser Systems

Scanner Processing Solution (SPS) 
for CO2 and fiber laser

Fiber Lasers

Fiber laser
compact version

up to 6,000 W

Fiber laser
up to 8,000 W

Solid-State Lasers

Q-switched laser
500 – 1,000 W

CO2 Lasers

Diffusion-cooled CO2 laser
1,000 – 8,000 W

Profile Welding System (PWS)
for CO2 and fiber laser

Diode Lasers

Diode laser
up to 6,000 W

Laser



Slab laser principle
Laser head (resonator side)
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Laserbeam
Output

Resonator
Housing

"Recipient"
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Slab laser principle
Resonator
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Laser Beam

Beam forming

Output Mirror

Cooling Water (out)

Gas Discharge

RF-Electrodes
(dielectric coating)

Cooling Water (in)
RF-Excitation

PREMIX laser gas

Rear Mirror
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Rendering of real structure

 Real laser: complex 3D geometry
only few symmetries

 Simplified geometry is not 
applicable for RF simulation

 Advantage:
Plasma discharge region is
almost perfectly „1D“

Electrode gap
≈ 1…2mm



Modeling approach

 Task: simulate homogeneity of discharge

 Direct 3D simulation of plasma RF:
Huge span of time and length scales

Too many degrees of freedom

 Solution: separation of scales (+ dimensions)
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„0D“
• Steady-state behaviour of plasma

gas chemistry / electron statistics / mobility / rates

1D
• Discharge properties in electrode gap

U/I-curve, depending on frequency, gap width,…

3D
• Use response curves for large scale simulations

Multi-level approach (model hierarchy)



Slab laser principle
Laser head (resonator side)
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Integrated Gas Supply – PREMIX Gas Cylinder

Laserbeam
Output

Resonator
Housing

"Recipient"

Lasermix® 690: 
65% He, 19% N2, 4% CO2, 6% CO, 3% O2, 3% Xe

Recipient bounds modeling domain
(no need for PML/TBC)
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Gas Chemistry

Lasermix® 690: 

 6 gas mixture components
(65% He, 19% N2, 4% CO2, 6% CO, 3% O2, 3% Xe)

 21 (relevant) molecule species
(plus vibrational levels)

 59 relevant electron collision processes

 For each reaction: 
effective collision cross sections …
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Discharge equilibrium

Step 1: Plasma Properties (0D)
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 Electron energy distribution function (EEDF)
not known a priori

 Calculation of EEDF, mobilities and rates
(Boltzmann Equation, Two-Term Approximation)

 Interpolated functions for subsequent simulations



Step 1: EEDF + Rates (Results)
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 Calculated rates agree with known roles
of mixture components in the discharge:

He cooling Highest elastic contribution

Xe ionization Highest ionization rate

O2 attachment Highest attachment rate in equilibrium

N2 energy transfer High electron impact cross section (vibration)

CO2 laser transistion Resonant coupling to N2 vibration

CO Long term stability Dissociation equilibrium CO / CO2 / O2

Image source: J. Schulz, Diffusionsgekühlte, koaxiale CO2-Laser mit hoher 
Strahlqualität, Dissertation, RWTH Aachen (2001)

Pumping scheme of a CO2 laser



 „Temporal“ evolution does not reflect actual thermal time scale!

 Artificial time scale τp ensures fast convergence to quasi-steady state

 For stability analysis, plasma temperature has to be self-consistent
Parabolic temperature profile T(z,Qm) 

only dependent on average heat source Qm

no need for solving the heat equation

 Self-consistent calculation via Global ODE*: 

Step 2: 1D Discharge - Setup
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𝜕𝑄𝑚
𝜕𝑡

= (𝑄𝑖𝑛𝑡 − 𝑄𝑚  ) 𝜏𝑃

* Calculation of Qint and global ODE is decoupled from plasma physics using the nojac operator and a segregated solver for better convergence

Qm = average heat source
Qint = integrated capacitive losses
τp = averaging time constant (3…5 RF cycles)  

z

Ground
T = 300K

Terminal (current)
T = 300KDielectric

(Charge conservation)

Wall
Surface Charge Accumulation
De-excitation / de-ionization

T(z,Qm)

Dielectric Barrier Discharge

z



Result parameters for 3D:
Impedance

Temperature (cooling)

Collision rates (laser pumping)

Boundary layer thickness

…

Step 2: 1D Discharge - Results
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Image source: J. Schulz, Diffusionsgekühlte, koaxiale CO2-Laser mit hoher 
Strahlqualität, Dissertation, RWTH Aachen (2001)
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Step 3: 3D simulation – Material impedance

 Task: find a „solid“ surrogate material which resembles the same UI-curve

 Replacement of plasma discharge (steady-state properties) by
„plate capacitor“ with conductive sheet (as part of a complex 3D structure)

 Evaluate normal electric field at boundary instead of terminal voltage:

ambiguous solutions exist for identical voltage drop

unique solution regarding normal field at boundary

Accessibility of variable
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Step 3: 3D simulation – Material impedance

 Task: find a „solid“ surrogate material which resembles the same UI-curve

 Replacement of plasma discharge (steady-state properties) by
„plate capacitor“ with conductive sheet (as part of a complex 3D structure)

 Interpolation function:
unique, continuous, smooth 
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Step 3: 3D simulation – COMSOL implementation

 3D RF simulations (emw – frequency domain)

 Upper electrode surface: „reference boundary“
interpolation function σs(|En|)

Boundary ODE: σs – σm = 0  (to avoid stiff matrix)

Model coupling (projection) from boundary to sheet volume

 Geometric multigrid solver (segregated RF / boundary ODE)
Number of DoFs: 6.737.446

Solution Time: 2 hours (8 Core CPU, 256GB RAM) 
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Step 3: 3D simulation – Results
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No actual time evolution:
Iterations of stationary solver



Step 3: 3D simulation – Results
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Step 3: 3D simulation – Results
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Step 3: 3D simulation – Results
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No actual time evolution:
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Step 3: 3D simulation – Results
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No actual time evolution:
Iterations of stationary solver



Conclusion & Outlook

 Multilevel approach enables 3D simulation of a planar gas discharge in a laser

 Mutual coupling of RF field and plasma physics is maintained

 Characteristics of the discharge can be evaluated at any point in a complex 3D geometry

 Model has been successfully applied
Design of RF feeding / matching architecture
Prediction of working point for alternative gas compositions
Good agreement with experimental results

 Perspectives: 
Temporal evolution of the ignition phase
Pressure variations during switch-on or pulsed operation
Further development and optimization of current and future products
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Thank you for your attention.


