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2. Governing Equations in Microwave 
Heating 
 
The equations that govern microwave heating of 
a material are Maxwell’s Equations, which 
govern the propagation of the microwave 
radiation, and the Forced Heat Equations, which 
govern the absorption and diffusion of heat by 
the materials. 
 
2.1 Maxwell’s Equations 
 
For calculating the heat input in a volume 
element, the calculation of the electric field (ܧሬԦ) 
and the magnetic field (ܪሬሬԦ) is required. The 
Maxwell equations describe the relationship 
between different electromagnetic field sizes. 
 ∇ × ሬሬԦܪ  = Ԧܬ + ݐሬሬԦ߲ܦ߲  ∇ × ሬԦܧ = − ݐሬԦ߲ܤ߲  ∇ ∙ ܦ = ∇ ߩ ∙ ܤ = 0 
 
In order to solve the Maxwell equations, 
additional equations are needed that describe the 
material dependency behavior. These equations 
can be simplified as: 
ሬሬԦܦ  = 0ߝ ∙ ݎߝ ∙ ሬሬԦܤ ሬሬԦܪ = 0ߤ ∙ ݎߤ ∙  ሬሬԦܪ
 
Where ߝ and μ describe the electromagnetic 
behavior in vacuum. It should be noted that the 
permittivity ߝ is a complex quantity, composing 
of a real (ߝᇱ ) and imaginary part (ߝᇳ).  
ݎߝ  = ݎ′ߝ + ݅ ∙  ݎ″ߝ
 
Where the real part is a measure of the 
polarizability of a material, while the imaginary 
part characterizes the quantity of the associated 
heat release.  
 
2.1 Forced Heat Equations 
 
Thermal Conduction: By means of conduction, 
the heat is transferred through a medium as a 
result of interactions between molecules or 

atoms. In this form of heat transfer, no 
microscopic material flow is required, thus it is 
mainly specified to solid media. For a 
sufficiently large body, the heat conduction can 
be calculated through the Fourier’s law. This law 
states that the time rate of heat transfer through a 
material is proportional to the negative gradient 
in the temperature and to the area, at right angles 
to that gradient, through which the heat flows. 
ሶԦݍ  = ܶ ݀ܽݎ݃ ߣ− =   ܶ∇ߣ−
 
Thermal Convection: Convective heat transfer 
is one of the major types of heat transfer between 
a solid and a fluid. When there exist a 
temperature difference between a body and a 
fluid in contact, the heat is transferred from the 
surface of the body to the fluid by means of 
conduction. Individual particles of the fluid take 
the thermal energy and carry it from the surface 
to into the main stream flow. The general 
approach to the description and calculation of the 
heat supplied by convection is: 
ሶݍ  = ሺߙ ௦ܶ − ஶܶሻ 
 
Heat Radiation: In the heat transfer by 
radiation, no transport medium is required. All 
bodies can emit energy in the form of 
electromagnetic radiation. The intensity of this 
radiation depends on one hand on the 
temperature of the body and on  
the other hand, on its nature and geometry. Heat 
radiation from a solid or a liquid usually 
possesses a continuous spectrum with a 
characteristic curve, which can be described by 
Planck's radiation law. However, gases emit 
radiation in the range of characteristic line 
spectrum of the material. The theoretical 
maximum heat flux of a so-called black body is 
described by the Stefan-Boltzmann law:  
ሶ௫ݍ  = ߪ ∙ ܶସ 
 
3. Theory 
 
Silicon is the product of the reduction of quartz 
(SiO2) with carbon (C) at high temperatures 
resulting in silicon (Si) and carbon monoxide 
(CO).  
 ܱܵ݅ଶ + ܥ2 ⇌ ܵ݅ +  ܱܥ2
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