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Among recent proposals for next-generation, non-charge-based logic is the notion that a single 
electron can be trapped and its spin manipulated through the application of gate voltages (Rev. Mod. 
Phys.79, 1217 (2007)). In this talk we present numerical simulations of such Spin Single Electron 
Transistors (SSET) in support of experimental work at the University at Albany, State University of 
New York aimed at the practical development of post-CMOS concepts and devices.   We use 
COMSOL based Multiphysics finite element simulation strategy to solve the Schrödinger-Poisson 
equations (with and without exchange-correlation effects) self-consistently to obtain realistic 
confining and gating potentials for realistic device geometries.  We will discuss the calculation of the 
gate-tuned ``g-factor" for electrons and holes (Phys. Rev. B 68, 155330 (2003)) in electro-statically 
defined quantum dots including the Rashba and Dresselhaus spin-orbit interactions numerically 
from realistic wave functions for asymmetric and symmetric confining potentials.  This work is 
supported through funding from the DARPA/NRI INDEX center. 
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The semiconductor industry is driving the development of optoelectronics devices with smaller 
and smaller feature sizes according to Moore’s law. A variety of efforts to use the electron spin 
rather than, or in combination with, its charge for information processing or, even more 
ambitiously, quantum information processing are being considered [1]. One of the challenging 
problems for such applications is to obtain sufficient control over the spin dynamics at large QD 
radius nanostructures in single electron Transistors.  
 
Based on finite element simulation work, it is possible to design a quantum dot spin quantum computer for 
large quantum dot radius where the g-factor can be engineered by manipulating the spin-orbit coupling 
through external gates. A spin polarized electron is injected into the dot from one of the ferromagnetic 
layers which is trapped by Coulomb blockade. Its spin orientation encodes a qubit and its arbitrary 
directions are brought in resonance and out of resonance with global ac magnetic fields by applying a 
suitable electric field or voltage into the dot which eventually alters the g-value. [2] 
 
Mathematical Model: 
 
The Hamiltonian for a single electron bound to a heterojunction quantum dot can be written as [3]  
 
                        ( )12D1DRz0 Η+Η+Η+Η+Η=Η   

                                 
The first term corresponds to the motion of a conduction band electron confined in a two dimensional 
parabolic well in an external perpendicular magnetic field B 
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 is the vector potential confined to the 2D plane. Here 

e is the electron charge, c is the velocity of light, m* is the conduction band edge effective mass, 0ω  is the 

parabolic confining frequency, 0g is the bulk g-factor and zσ is the diagonal Pauli matrix. The eigenstates 
of such a Hamiltonian and corresponding self energies were determined analytically by Fock   and Darwin   
long before the appearance of nanostructures [4]. 0Η is diagonal when written as a function of the Fock-

Darwin number operators   ±±± = aan †  
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l  being the Fock Darwin radius [3].   

 
 
The second term in Hamiltonian (1) represents the Quantum well confinement in the growth direction,   
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z  where  ( )zV  is a triangular well, ( ) zΕezV =   for 0z ≥  and  ( ) ∝=zV    

for 0z < . A numerical calculation leads to the zΗ  ground state  
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Where   ζ1 = - 2.3381 is the first zero of the Airy function Ai, while the inverse length scale κ is set by  
 
                                        κ = (2m*e E/ ћ2)1/3                                                                                                            (7) 
 
And the ground state energy is E0Z = - ζ1eE /κ.  In the discussion below, we will make use of the average 
momentum squared in the state (6) <Pz

2> = 0.7794 (ћ κ) 2 and the average position <z> = 1.5587/κ (which 
is the thickness of the 2DEG). 
 
We now turn to the spin orbit interactions, third to fifth terms in Eq. (1). A k.p band structure calculation 
for zinc blend materials leads to the bulk conduction-band spin-orbit interaction [5] 
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Where ( ) cH .~ 2
z

2
yxx +Ρ−ΡΡ=Ρ . This equation is Hermitian and guage invariant. By averaging Eq (8) 

over the Quantum well ground state, we will get two spin orbit terms, linear and cubic in momenta [6]. 
 

                                 ( ) ( )9ΡσΡσγ0.7794Η yyxx

2
c

1D +−=
h

κ
     

 
 

                                      ( ) ( )10..ΡΡσΡΡσγΗ 2
xyy

2
yxx3

c
2D cH+−−=

h
  

The structural inversion asymmetry in V(z) leads to the Rashba interaction [7]  
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TABLE 1 Parameters used in our calculations [3, 7, 8] 
 

Parameter                                          GaAs            
 

g0                                                                                      -0.44 

 

m*
/me                                                                               0.067 

 
αR                                 [ Å2 ]                           4.4                        
 
γc                                [ eV  Å3]                         26 
 

 
 

                             
   

                             Figure 1: Illustration of Quantum Dot for spin up in a symmetric confining potentials             
at electric field 106 v/cm, 1 T magnetic field and QD radius equal to 120nm. 
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                                     Figure 2: g-factor switching vs. quantum dot radius for symmetric quantum Dots 
 
 
   
                 

                                     

0 2 4 6 8 10 12 14 16
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 g
/g

0

Graph 2 effective g-value Vs Magnetic field (T) in fixed QD radius=20nm
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Figure 3: effective g-value verses magnetic filed in 20 nm fixed QD radius at 
different electric fields in symmetric confining potential 

  



 
 
                            Figure 4: Illustration of Quantum dot for spin up in asymmetric confining potentials (y-

axis confining potential is twice bigger than x-axis) at 106 v/cm electric field, 1Tesla 
magnetic field and QD radius equal to 120nm 
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                                   Figure 5: effective g-value verses magnetic filed in 20 nm fixed QD radius at   different 

electric fields in Asymmetric confining potential 
 
Results and Discussions: 
The full Hamiltonian (1) is solved by using COMSOL Multiphysics Commercial software to find the 
ground and first excited state of GaAs QD in 2D plane for symmetric and asymmetric confining potentials 
which eventually leads us to calculate the electron g-value  
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Where E1 and E2 are the ground and first excited states including the spin, µB  is the Bohr magneton and B is 
the applied magnetic field. We study the g-factor behavior at the range of electric fields from 105 v/cm to 
106 v/cm and various quantum dot radius by restoring the exact diagonalization of the full Hamiltonian 
(eqn.1) by finite element method (similar work for GaAs QD can be found in [3]. Figure 1 is the illustration 
of Quantum Dots for spin up in symmetric confining potentials at 106v/cm, 1 T magnetic field and QD 
radius equal to 120nm. Figure 4 is the illustration of Quantum dots for spin up in asymmetric confining 
potentials (y-axis confining potential is twice bigger than x-axis) at 106v/cm electric field, 1Tesla magnetic 
field and QD radius equal to 120nm. 
 



Figure 2 shows the results of g-value calculation for the different values of   electric fields and GaAs QD 
radius in symmetric confining potentials. It is clearly indicating that level crossing (two lowest energy 
states have the same spin) is mainly depends on the electric fields. We can switch the positive g-value to 
negative g-value at high electric fields (around 7*105 v/cm to 10*105 v/cm) and then we are getting level 
crossing at high QD radius. So the proposed device might work at high electric fields and lower Quantum 
Dot radius than level crossing. We estimated for a GaAs QD with nm58.210 =l , ∆E ~ 0.12 mev and 

0.23~gg 0 −−  at 106 v/cm for symmetric confining potentials. Figure 2 is a plot of effective g-value 
verses magnetic filed in 20 nm fixed QD radius at different electric fields in symmetric confining potential 
by solving full Hamiltonian 1 numerically. Instead controlling the g-value electrically, we can also control 
the g-value magnetically at high electric fields. 
 
Figure (5) is a plot of effective g-value Vs QD radius in asymmetric confining potential where y-axis 
confining potential is twice bigger than x-axis confining potential. From figure it is clearly indicating that 
we are losing level crossing by applying asymmetric confining potential and we can still switch the positive 
g-value to negative g-value at high electric fields (around 7*105 v/cm to 10*105 v/cm). So the proposed 
device might work at large Quantum Dot radius by applying asymmetric confining potential in either x or y 
directions. We estimated for a GaAs QD with ℓ0=21.58 nm, ∆E ~ 0.015mev and g-g0 ~ -0.18 at 106 v/cm 
for asymmetric confining potential (y axis is twice than x-axis confining potential).  
 
In this section, we comment on some of the features exhibited by the results of this work and will comment 
on some of our calculations and will point out the future directions for realistic design of the post CMOS 
process. Our results agree with the results of Das Sarma [3] for the case of symmetric confining potentials.  
For realistic geometries one must consider asymmetric confining potentials. In this case the Rashaba term 
dominates over the Dresselhauss term in the full Hamiltonian. 
GaAs QD g-factor can be controlled electrically even in the absence of wave function overlap with a 
different material. These parameters show a striking dependence with dot radius when the 2DEG 
confinement is strong (`105v/cm). For example, the g-factor changes sign. This result establishes the 
versatility of III-V quantum dots as units for spin manipulation. 
 
A related finding of interest in our work is the dual importance of both Dresselhauss (i-e the Bulk inversion 
symmetry inherent in zinc blend structures of II-V semiconductors) and Rashba (i-e the real space 
structural   inversion asymmetry present in a heterostructure due to external electric fields).  
 
Conclusions: 
The relative quantitative importance of the Dresselhauss effect in the III- V nanostructures should have 
considerable significance in the g-factor engineering to the spin quantum computer architecture (that we 
consider in this work) but also in fabrication of the Datt-Das spintronic transistor where spin orbit coupling 
is used to modulate a spin – polarized current in field effect transistor configuration. 
Eigen values and g- value calculation for different size of the GaAs QDs in different electric fields in 
symmetric confining potentials are consistent with previous findings by Das Sharma [3] where 
Dresselhauss terms were found to dominate. 
 
Our new results based on finite element simulation show the importance of both types of spin orbit 
coupling (Rashba and Dresselhous) as well as a significant effect resulting from asymmetric confining 
potentials.  These simulations are helping to guide experimental efforts by a providing realistic, engineering 
level description of the devices. 
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