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Rod seals :  among the most critical elements in hydraulic equipments

– prevent hydraulic fluid from entering the environment.
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Schematic of Rod Seal
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Problem Decomposition 
&

Hybrid Framework

Multi-scale FSI model consists of :

• Macro-scale structural mechanics for the seal deformations (F.E.) .

• Micro-scale fluid mechanics of the lubricating film in the sealing zone (F.V.) .

• Micro-scale statistical contact mechanics of the contacting asperities on
the seal lip .

• Micro-scale elastic deformation mechanics of the sealing zone (F.E) .

• Macro-scale elastic contact mechanics at the seal-rod interface (F.E) .

A single hybrid finite element – finite volume framework, incorporating all these models, 
will solve these highly coupled nonlinear multiphysics equations simultaneously.



Macro-Scale Deformation Mechanics

• Macro-scale deformation mechanics for the seal mounted between the housing and 
rod, under pressurized conditions.

• Solved using an in-house MATLAB code coupled with COMSOL’s finite element 
code. 

• The seal is modeled as a nearly incompressible, linear, elastic and isotropic material 
with small deformation theory. The principle of virtual work for the axisymmetric 
system reads,

• Mixed formulation is used to model near incompressibility.

• Negative mean stress is added as a new dependent variable and the stress tensor  is 
decomposed into a deviatoric part and a mean part.
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Micro-Scale Fluid Mechanics
• The micro-scale fluid mechanics in the sealing zone is governed by the transient 

Reynolds equation. 

• Model takes into account cavitation and squeeze film effects.

In the liquid region: 

In the cavitated region: 

Boundary conditions :
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Micro-Scale Fluid Mechanics continued…

• The average truncated film thickness is given by,

• Gaussian distribution of asperities is assumed which yields

• Fluid equations solved for      and        at each time step numerically with a finite 
volume formulation. 

• Set of linear algebraic equations is solved using the tri-diagonal matrix algorithm 
(TDMA). 

• Time integration is carried out using a fully implicit method giving an unconditional 
numerical stability to the procedure.

• Solution yields the fluid pressure distribution and location of cavitation zones at each 
time step.
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Micro-Scale Statistical Contact Mechanics

• Significant asperity contact may occur during mixed lubrication.

• Necessity to add an micro-scale asperity contact pressure to the hydrodynamic 
pressure in computing radial seal deformations and local film thickness.

• Assuming Gaussian distribution of asperity heights, the micro-scale contact pressure 
is given by,

• Integral calculated using “Adaptive Gauss-Kronrod” quadrature.
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Micro-Scale Deformation Mechanics
• Needed to get micro-scale film thickness distribution at each time step.

• Radial deformations of sealing element under combined action of sealed pressure, 
fluid pressure and contact pressure. 

• In discretized form with n axial nodes along the sealing zone, the film thickness at the i th node 
can be expressed as,

• : Obtained from F.E. calculations after applying a net pressure of                                   
over the contact zone.

• :  Thickness that a hypothetical film would occupy under dry contact conditions.
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Micro-Scale Deformation Mechanics continued..

• Computed by equating dry contact pressure           from the macro-scale F.E. 
analysis with the statistical micro-scale contact pressure      . 

• Using a curve fit method to invert equation for        yields,
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Macro-Scale Contact Mechanics
• To obtain         , the macro-scale F.E. contact mechanics is solved at the seal-rod interface and

seal-housing interface.

• Augmented Lagrangian method used. Augmentation component introduced for dry contact 
pressure. 

• For each slave point, a corresponding master point is searched in the direction perpendicular to 
the slave boundary. 

• The contact interaction gives the following contribution to the weak form on the slave boundary 

• The augmented dry contact pressure defined on the slave boundary is given by : 
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Flow Chart for Hybrid Algorithm
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Base Parameters

Elastic modulus 43 x 106 Pa 
Poisson’s ratio 0.49 
Sealed pressure 6.90 MPa 
Rod diameter 88.9 mm 
Stroke 1.93 m 
Reference viscosity 0.043 Pa-s 
Pressure-viscosity coefficient 20 x 10-9 Pa-1 
Asperity radius 1 μm 
Asperity density 1014 m-2 
Asperity contact friction 
coefficient 

0.25 

 



Results



Macro-Mechanics
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Rod Velocity vs. Time



Film Thickness Distribution
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Fluid Pressure Distribution
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Contact Pressure Distribution
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Friction Force vs. Time
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Net Fluid Transport vs. Time
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Fluid Transport   vs. Seal Roughness
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Flow Rate  vs. Time

Couette Flow Prominent



Conclusions

• Hybrid framework of finite element – finite volume solution algorithms for 
solving highly coupled, nonlinear, multiscale fluid-structure interaction is 
developed.

• Hybrid method facilitated an online calculation of micro-scale deformations 
necessary to model the transient seal response. 

• Transient FSI solution revealed the history of a reciprocating seal’s behavior 
over a cycle.

• Solution confirmed the presence of a “critical seal roughness” needed to 
prevent the leakage.

• Solution showed that thinner films during the outstroke than during the 
instroke, and cavitation during the outstroke, are characteristics of a non-
leaking seal. 

• It also provided insight into why the behaviors during outstroke and instroke 
differ.
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