

Simulation of the Acoustic Environment for the Manufacture of Graded Porosity of Materials by Sonication

COMSOL Conference, Hannover November 2008

Professor Jonathan Corney
Dr Carmen Torres-Sanchez

Department of Design, Manufacture and Engineering Management Glasgow, United Kingdom

Email: carmen.torres@strath.ac.uk

Motivation

CPD (Critical Point Dryer) Images

Root Hair, cryo-SEM preserved. As appeared in www.quorumtech.com on 8th June 2008

Transverse fracture of the young stem of young Bamboo (*Bambusa sp*) stem demonstrating xylem and phloem bundles and heavily thickened (lignified) epidermal and hypodermal cells. As appeared in www.quorumtech.com on 8th June 2008

Outline

Motivation

Application of the manufacturing technique and its potential

Results: engineered graded porous foams

COMSOL modelling: boundaries and settings

Acoustic Environment: control and comparison exp vs model

COMSOL model: limitations and opportunities

Research Opportunities in the manufacturing of materials

Motivation

Synergy:: gradients of composition, structure, properties

(a) Natural Sponge¹

(b) Generic Metal Foam

(c) Reticulated polymeric foam

Engineered mechanism :: Digital customisation of porosity

Refs: 1. Yang T.H.J., 2006, Structure-property relationships of biological tissues. PhD Thesis. Heriot-Watt University

- 2. Stanford Synchrotron Radiation Laboratory. Studies of estrogen depletion in laboratory rats. www2.slac.stanford.edu
- 3. Fossil dinosaur bone microstructure. www.geo.ucalgary.ca

Motivation

Current foam manufacturing technologies are geared towards mass production of homogeneous materials

Heterogeneous materials have to be fabricated from segments of homogeneous parts

(a) Bergstrom JS et al., (1999), Rubber Chem. Technol., 72, 633-656

(b) Kalita SJ et al. (2003), Materials Science and Engineering: C, 23(5): p. 611-620

Polymeric Foams

Phases of Foam Formation

Ref: Rompala et al., Alliance for the Polyurethanes Industry (API) Polyurethanes Conference 2002

Ultrasound as porosity-tailoring agent

University of

Strathclyde

Stable cavitation vs Transient cavitation

Ref: Zheng, L. and Sun, D.W., *Innovative applications of power ultrasound during food freezing processes - a review.* Trends in Food Science & Technology, 2006. 17(1): p. 16-23

Experimental rig and Methodology

Ref: C. Torres-Sanchez and J.R. Corney, "Effects of ultrasound on polymeric foam porosity", Ultrasonics Sonochemistry, Vol. 15, No 3, 2008, pp 408-415

Results: controlled porosity distribution

University of

Strategic placement in a controlled acoustic environment in order to obtain a desired porosity distribution

Cross-section of Sonicated foams at difference distances from probe (on the left)

20-30kHz :: equal acoustic pressure (with a %tolerance)

Quantifying porosity distribution

Bespoke Image Analysis :: there is not a method to measure porosity gradation

Closed-pores, Local Variation => conventional methods of porosity measurement cannot be used

Quantifying porosity distribution

Outline

Motivation

Application of the manufacturing technique and its potential

Results: engineered graded porous foams

COMSOL modelling: boundaries and settings

Acoustic Environment: control and comparison exp vs model

COMSOL model: limitations and opportunities

Research Opportunities in the manufacturing of materials

Acoustic Environment : Exploring the boundary conditions and settings

- Locations of vessels-to-sonotrode
- Sonotrode intensity
- Wave profile type: Radiation :
 - For this application 'spherical' and 'cylindrical' drew very similar results
- Subdomain nature
 - Both subdomains could not be simultaneously manipulated
- Boundary conditions for the bath and vessels
 - Not a perfect match : compromised 'soft/hard'
- Comparison hydrophone vs modelled results

Acoustic Environment : Exploring the boundary conditions and settings

Comparison hydrophone vs modelled results

Experimental rig: Acoustic Environment

Experimental rig: Acoustic environment

Experimental rig: Acoustic Environment

Acoustic pressure distribution inside of vessels

Experimental rig: Acoustic Environment

- Limitations in the simulated environment:
 - Acoustic impedance is a constant in the simulated model :: "Working Boundaries"
 - Approximated to initial liquid nature (Z=Z_{water}= 1.48 MRayl)
 - Approximated to **final** state i.e. soaked solid (Z=Z_{cortical bone}= 2.6 MRayl)

Results: sonicated foams 'contour maps'

Comparison Experimentation vs Simulation

Comparison porosity (experimental) vs sound pressure distributions (simulation) for irradiated foam

Research Opportunities

Multi-source experimental rig and coupling agent :: exploration

University of

Comparison porosity (experimental) vs sound pressure distributions (simulation) for irradiated foam

Research Opportunities in Manufacture

(i) Al foam and bread, by J.Banhart

(ii) Metal foams and aerospace components, by J. Banhart

(iii) Bone crosssection, Fossil dinosaur bone microstructure. www.geo.ucalgary.ca

Underpinning principle

Underpinning principle

at Antinode: negative porosity gradation (from large to small pore size)

at Node: positive porosity gradation (from small to large pore size)