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Abstract: Fate of microorganisms in porous 
media has very important applications in many 
branches of environmental and petroleum 
science and engineering, among others; however, 
concurrently it is a very complex and interacting 
phenomenon mainly because microorganisms are 
living. Applying the systematic modeling 
approach to continuum systems, we derive a 
model that include net flux of microorganisms 
and nutrients by convection and dispersion, 
growth and decay rates of microorganisms, 
chemotactic movement and nutrient 
consumption, adsorption of microorganisms and 
nutrients on rock grain surfaces, as well as 
desorption of microorganisms. Porosity 
reduction due to cell adsorption is considered. 
We use the Solute Transport application of the 
Earth Science Module in COMSOL 
Multiphysics to implement a numerical solution 
of the model. The numerical simulations 
reproduce results previously reported elsewhere; 
moreover, we show the spatial-temporal 
distribution of microorganisms and nutrients 
along the system and time. We point out the 
complementary role of the spatial-temporal 
distribution of components with breakthrough 
curves to analyze the behavior of both fluent and 
adsorbed components. 
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1. Introduction 
 

Transport of microorganisms through porous 
media governs many phenomena in 
bioremediation of environmental pollution 
problems and microbial enhanced oil recovery. 
The aim of this work is to investigate the effects 
of some transport parameters on breakthrough 
curves as well as on spatial distribution of 
components transported through a porous 
medium by a fluid phase. 
 
1.1 Description of the Problem 
 

We are considering the transport of 
microorganisms and nutrients by water injected 
through a porous medium in a laboratory scale. 

The first system analyzed is from Tan et al. 
[1]. A 0.3 m long column packed with aquifer 
sand. A peristaltic pump was used to supply 
liquids at constant upward flow velocities. A 
pulse type boundary condition was chosen for all 
cases. The sand column was saturated with 
percolating sterile deionized water prior to the 
breakthrough curve (BTC) was obtained. To 
measure the BTC of microorganisms, deionized 
water was replaced for 1 hour by the 
microorganism suspension, and then the flow of 
sterile deionized water was resumed. We will 
show the simulated sodium chloride BTCs for 
three flow velocities; in agree with Sen et al. [2], 
we obtain dispersion coefficients two orders of 
magnitude greater than which obtained by Tan et 
al.. Following Sen et al., we only show the BTC 
of microorganisms used by them to validate their 
model. We can observe some differences among 
microorganism’s BTCs as we implement models 
with varying features. 

The second system discussed is from Chang 
et al. [3]. A sample of rock (usually called core). 
In this case, we simulate a continuous and 
simultaneous injection both of microorganisms 
and nutrients until a steady state is obtained. We 
observe that for a large enough time, a 
practically full consumption of nutrients by 
microorganisms is established. The planktonic 
and the sessile microorganisms have a maximum 
concentration at approximately three tenths and 
one sixth of the system length from the injection 
side, respectively. 
 
2. Systematic Modeling Approach 
 

The local balance equations obtained from 
the systematic modeling approach to continuum 
systems are [4]: 
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where α
γψ  is the intensive property associated 

with γ  component in phase α  of our interest; 
vαG  is the mean velocity of that phase, α

γτ
G  is the 

flux of the property through the boundaries of 
the system, and gα

γ  represents the sources on the 

region occupied by the body, ( )B t . 
Even though, these are the basic governing 

equations for a wide diversity of continuum 
systems, they are not enough to completely 
define a model. To get complete models, in 
addition to the basic equations, one first requires 
sufficient constitutive laws linking intensive 
properties between themselves and defining the 
sources, gα

γ , the fluxes α
γτ
G  and phase velocities 

vαG  in terms of them. Moreover, proper initial 
and boundary conditions should be specified 
(and they must be satisfied) for the intensive 
properties, such that a well posed problem is 
defined. This means that the solution of the 
problem exists and is unique. 
 
3. Derivation of the Model 
 

In general, we employ the following 
constitutive laws: Darcy’s velocity u vα α αφ=G G  
which characterizes the advection, where αφ  is 
the volume fraction occupied by the α  phase. 
Fick’s law, which can be written in a generalized 
sense as α α α

γ γ γτ ψ= ⋅∇DG , where α
γD  is a tensor 

which includes several conduction processes 
such as diffusion and dispersion. The sources gα

γ  
consist of various types of physicochemical and 
biological reactions, injection/production rates 
and other sources. 

In particular, to construct the model we 
assume that: 

• The system has three phases: fluid 
water, with wv v=

G G ; static biofilm and 
solid, with , 0b rv =

G . 
• The system has four components: water 

is only in water phase, rock is only in 
solid phase, microorganisms are 
partitioned among water and biofilm 
phases, and so are the nutrients between 
water and solid phases. 

• The porous medium is saturated, so 
w wSφ φ φ= =  where the water 

saturation is 1wS =  and the porosity is 
φ ; as well as the medium is isotropic, 
so Dα α

γ γ=D I  is a diagonal matrix. 
• The conduction of components is due to 

hydrodynamic dispersion, so 

( )w
mD v D
γγ α τ= +

G  where the 

dispersivity is α , the tortuosity is 1τ <  
and the molecular diffusion is mD

γ
. 

• Microorganisms and nutrients have 
biological interaction, as growth Monod 

equation [5]: max

/

w
n

w
m n n

c
K c
µ

µ =
+

, where the 

maximum specific growth rate is maxµ , 
Monod constant for the nutrient is 

/m nK , and the water nutrient’s 
concentration is w

nc ; and linear 
chemotactic velocity, as [6]: 

( )lnc w w w
c n c n nv k c k c c= ∇ = ∇

G , where the 
chemotactic sensitivity coefficient is 

2 4c tk fs R= , while the differential 
tumbling frequency is f , the 1D 
swimming speed is s , and the number 
of receptors is tR . 

• Microorganisms have linear decay: 
d mk ρ σ  for sessile ones and w

d pmk cφ  for 
planktonic. Here, the cell’s specific 
decay rate is dk  and we assume that it 
is the same for both, microorganism’s 
density is mρ , the volume of sessile 
microorganisms by unit volume of bulk 
soil is σ , and the water planktonic 
microorganism’s concentration is w

pmc . 
• Nutrients and solid have 

physicochemical interaction, as a 
preferred type of adsorption isotherm: 
Linear, s w

n nc Kc= ; Freundlich [7], 
Ns w

n F nc K c= ; or Langmuir [8,9], 

1

w
s L n
n w

L n

K scc
K c

=
+
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• Microorganisms and solid have 
physicochemical interaction, as a 
irreversible limited desorption: 

( )r m irrk ρ σ σ−  for irrσ σ>  and 0 for 



irrσ σ< , where the desorption rate 
coefficient is rk , and the minimum 
sessile cell concentration is irrσ , which 
accounts for cells that are irreversibly 
adsorbed within the porous medium. 

• Microorganisms have quasi-linear 
adsorption on solid: ( )0

w
a pmk cφ σ− , 

where the adsorption rate coefficient is 
ak . 

• Porosity reduction due to cell 
adsorption is considered as: 

( )0φ φ σ= − , where the initial porosity 
is 0φ . 

• Microorganisms are uniformly 
suspended in water: m wρ ρ� , such that 
sedimentation is negligible: 0gv =

G . 
• Flow is assumed to be at steady state; 

hence a constant flow velocity is 
imposed. 

We summarize part of the above assumptions 
in table 1. 

 
Table 1: Intensive properties associated with mass of 
components 
 
Phase (α ) Component ( γ ) Intensive 

Property 
Water 
( wα = ) 

Water ( wγ = ) 
Planktonic 
( pmγ = ) 
Nutrients 
( nγ = ) 

wφρ  
w
pmcφ  
w
ncφ  

Biofilm 
( bα = ) 

Sessile 
( smγ = ) 

b
sm mc ρ σ=  

Solid 
( sα = ) 

Rock ( rγ = ) 
Nutrients 
( nγ = ) 

( )1
b pr rρ φ ρ= −  

b

s
r ncρ  

 
Where the water density is wρ  and the bulk soil 
density is 

br
ρ  when the particle density is 

prρ . 
 
4. Governing Equations 
 

Applying the systematic modeling approach 
to continuum systems (summarized by equation 
(1)) and considering the previous assumptions, 

we obtain the following governing equations for 
the problems described in subsection 1.1: 
 

Microorganisms 
 
Planktonic (in water) 

( ) ( )( )
( ) ( )

w w t w w
pm pm pm pm

w
d a pm r m irr

c c v c
t

k k c k

φ φ φ

µ φ ρ σ σ

∂
+∇ ⋅ − ⋅∇ =

∂
= − − + −

DG
 (2) 

where t w c gv v v v= + +
G G G G  is the total velocity 

composed by adding the mean water, 
chemotactic, and sedimentation velocities, 
respectively. 
 
Sessile (in biofilm) 

( )

( )

m

w
d r m a pm r m irr

t
k k k c k

ρ σ
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Remember that desorption term exist only if 

irrσ σ> . 
 

Nutrients 
 
Total (in water and rock) 

( )
( )( )

( ) //
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w
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t
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Select one of the predefined adsorption isotherm. 
 
Additionally to this system, we need a set of 
initial and boundaries conditions. We use the 
following ones: 
 
Initial condition: 

00 0
0w w

pm ntt t
c cσ

== =
= = =     (5) 

 
Inlet boundary condition (general Neumann): 

( )
00

ˆ ˆw w w w

x
n c v c n c vγ γ γ γφ φ φ

=
 − ⋅ − ⋅∇ = ⋅ DG G  (6) 

where ,pm nγ =  and 
0

0wcγ ≠  only during the 

injection of the pulse, i.e., for 0 injt t< < . 
 
Outlet boundary condition (advective flux): 



( )ˆ 0
L

w w

x x
n cγ γφ

=
 − ⋅ − ⋅∇ = D     (7) 

 
5. Numerical Model 
 

The previously derived model is a 
mathematically defined system of three fully 
coupled partial differential equations (2)-(4), the 
last of which can be nonlinear; for three 
variables: w

pmc , σ  and w
nc . We implement the 

corresponding numerical model using the 
powerful computational environment provided 
by COMSOL Multiphysics [11]. 
 
5.1 Implementing the Model of BTCs for 
Sandy Column Simulations 
 
First of all, we perform numerical simulations in 
1D of the BTCs of sodium chloride (tracer, 

tγ = ) for three flow velocities to determine the 
dispersion coefficient, w

tD . The domain is a 0.3 
m line segment. The mesh consists of 960 
elements. We use the default setting, i.e. 
quadratic Lagrange polynomials to interpolate 
and the UMFPack as linear system solver; in 
consequence there are 1921 degrees of freedom. 

In this case there is only one equation to 
solve: 

( ) ( ) 0w w w w
t t t tc c v D c

t x x
φ φ φ∂ ∂ ∂ + − = ∂ ∂ ∂ 

  (8) 

with the following initial and boundaries 
conditions: 
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where 
0

0w
tc ≠  only during the pulse injection, 

i.e., for 0 injt t< < . 
We used data from Tan et al., shown in table 2. 
 

Secondly, assuming that the dispersion 
coefficient for planktonic microorganisms is the 
same as the dispersion coefficient for tracer 
previously obtained: w w

pm tD D= , we proceed to 
establish the adsorption and desorption rate 
coefficients, ak  and rk , performing a numerical 

simulation of the BTC of microorganisms 
suspended in deionized water for a flow velocity 
of 0.2v =
G mm/s and injected cell concentration 

of 
0

81.2 10w
pmc = × cells/mL. The domain and its 

partition remains the same as above but degrees 
of freedom are doubled, because in this case 
there are two equations to solve, (2) and (3) with 
µ  and dk  set to zero, as growth and decay are 
neglected; and tv v=

G G  as chemotactic and 
sedimentation velocities are null, thus obtaining 

( ) ( )( )
( )

w w w w
pm pm pm pm

w
r m irr a pm

c c v c
t
k k c

φ φ φ

ρ σ σ φ

∂
+∇ ⋅ − ⋅∇ =

∂
= − −

DG
 (10) 

( ) ( )w
m a pm r m irrk c k

t
ρ σ φ ρ σ σ∂

= + −
∂

   (11) 

with the same initial and boundary conditions as 
above, but pmγ =  instead of tγ =  and adding 
one initial condition: 

0
0

t
σ

=
=          (12) 

and using a minimum sessile cell concentration 
of 0.02irrσ = . Remember that the desorption 
term exist only if irrσ σ> . 

 
Table 2: Input data for tracer BTCs in sandy column 
[1] 
 
Parameter Value 
Porosity 0.38φ =  
Water velocities 0.05,0.1,0.2v = mm/s 
Injected concentration 

0
0.01w

tc = mol/L 

Injection time 1injt = h 
Column length 0.3Lx = m 
 
5.2 Implementing the Model of MEOR Core 
Flooding Simulation 
 
Now we simulate a 1D core flooding with 
microorganisms and nutrients simultaneously 
and continuously. The domain is now a 0.25 m 
line segment. The mesh consists of 120 
elements. We use the default setting again, such 
that now there are 723 degrees of freedom. 

In this problem we use the complete model, 
equations (2)-(4), with tv v=

G G  as chemotactic 
and sedimentation velocities are null, and 0s

nc =  



as there are not nutrients adsorption. We used 
data from Chang et al., shown in table 3. 

 
Table 3: Input data for BTCs and distributions of 
nutrients and microorganisms in core flooding [3] 
 
Parameter Value 
Porosity 0.2295φ =  
Injection rate 1u = ft/day 
Nutrients dispersion 
coefficient 

0.0083w
nD =  ft2/day 

Microorganisms 
dispersion coefficient 

0.0055w
pmD =  ft2/day 

Maximum specific 
growth rate 

max 8.4µ = day-1 

Monod constant / 0.5m nK = lb/ft3 
Yield coefficient / 0.5m nY =  
Specific decay rate 0.22dk =  day-1 
Desorption rate 37rk =  day-1 
Adsorption rate 25ak =  day-1 
Minimum sessile cell 0.003irrσ =  
Nutrients injected 
concentration 0

2.5w
nc = lb/ft3 

Microorganisms 
injected concentration 0

1.875w
pmc = lb/ft3 

Injection time 24injt = h 
Column length 0.25Lx = m 
 
6. Discussion of Experimental Results 
 

Next, we show and discuss simulation results 
for the two systems analyzed in this work. 
 
6.1 BTCs for Sandy Column Simulations 
 

Simulated sodium chloride BTCs for three 
flow velocities are shown in Fig. 1. We agreed 
with Sen et al., as we obtain dispersion 
coefficients 410w

tD −∼ m2/s, i.e. two orders of 
magnitude greater than those obtained by Tan et 
al.. Following Sen et al., we show in Fig. 2 the 
BTC of microorganisms used by them to validate 
their model. We can observe some difference 
among microorganisms BTCs as we implement 
models with varying features. The model (black 
curve in Fig. 2) corresponding to adding all 
differences observed respect to Sen et al. (blue 
curve), namely, a different inlet boundary 
condition, include porosity reduction due to cell 

adsorption, as well as we infer that the 
conditional desorption was omitted by them in 
their implementation of transport equation for 
sessile microorganisms (note the flatness in the 
blue curve versus the inflection points at 

0
0.2w w

pm pmc c ≈  in the red and the black curves of 
Fig. 2). 
 

 
 

Figure 1. BTCs of sodium chloride. 
 

 
 

Figure 2. BTCs of microorganisms. 
 

Additionally, we show in Figs. 3 and 4, the 
spatial-temporal distribution of adsorbed 
microorganisms (along the column and every 
minute) with and without conditional desorption. 
In the first case, we observe that there is an 
interesting behavior, mainly around 0.18x = m 
for 13 25t< <  minutes. We think that this 
behavior (such as “clogging”) is due to the 
interaction between adsorbed and flowing 
microorganisms quantified by means of 
conditional desorption. Meanwhile, the lack of 
implementation of the conditional desorption 



leads to unphysical adsorption ( 0σ ≠  at 
1t = minute and Lx x= , bottom curve of Fig. 4). 
It is evident the relevance of obtaining the 

spatial distribution of components (mainly, the 
adsorbed ones) besides the BTCs, because the 
latter will not give us direct information about 
the former. 
 

 
 
Figure 3. Spatial-Temporal distribution (every minute 

up to the 25th) of adsorbed microorganisms with 
conditional desorption. 

 

 
 

Figure 4. As Fig. 3, without conditional desorption. 
 
6.2 MEOR Core Flooding Simulation 
 

Simulated nutrients and microorganisms 
BTCs for a continuous and simultaneous 1D core 
flooding are shown in Fig. 5. We observe a clear 
difference between the nutrients BTCs as 
practically no BTC exists in the case when it is 
not considered conditional desorption, Neumann 
BC, and porosity reduction; meanwhile, between 
microorganisms BTCs we note a little plateau (a 
kind of “quasi-stationary state”) of almost 45 

minutes at around 5 hours of injection, which we 
explain as a dynamical equilibrium in growth 
and sorption of the microorganisms along the 
core. 
 

 
 

Figure 5. BTCs of nutrients (red curves) and 
microorganisms (blue curves). 

 
Moreover, we show in Fig. 6 the nutrient and 

planktonic microorganism distributions along the 
core for some selected times. 
 

 
 

Figure 6. Spatial-Temporal distribution (every hour 
up to the 6th, and every 3 hours hereafter) of nutrients 
and planktonic microorganisms (rising from 30kg/m3). 
 

Finally, we present in Fig. 7 the distribution 
of sessile microorganisms along the core for the 
same times above. 

In Figs. 6 and 7, we observe steady states: for 
a time of about 6 hours a practically full 
consumption of nutrients is established, whereas 
for a time of about 24 hours an asymptotic value 
of microorganism concentration is reached. 
Additionally, we observe that planktonic and 



sessile microorganisms have maximum 
concentration values of 48.85w

pmc =  kg/m3 and 
1.09%σ =  at 0.074 m and 0.041 m 

(approximately three tenths and one sixth of the 
system length from the injection side), 
respectively. 

 
 

 
 
Figure 7. Spatial-Temporal distribution (as above) of 

sessile microorganisms. 
 
7. Conclusions 
 
Applying the systematic modeling approach to 
continuum systems, we derive a model that 
include the net flux of microorganisms and 
nutrients by convection and dispersion, growth 
and decay rates of microorganisms, chemotactic 
movement and nutrient consumption, adsorption 
of microorganisms and nutrients on rock grain 
surfaces, as well as desorption of 
microorganisms. Porosity reduction due to cell 
adsorption is considered. 

For sandy column, we conclude that it is 
evident the relevance of obtaining the spatial 
distribution of components (mainly, adsorbed 
ones) besides the BTCs, because the latter will 
not give us direct information about the former. 
Phenomena such as “clogging” could be 
observed if the interaction between adsorbed and 
flowing microorganisms quantified by means of 
conditional desorption is included, else, 
unphysical adsorption is obtained. 

For core flooding, we observe that a 
practically full consumption of nutrients is 
established earlier than an asymptotic 
concentration of microorganisms. The planktonic 
and the sessile microorganisms have a maximum 

concentration at approximately three tenths and 
one sixth of the system length from the injection 
side, respectively. It is in these places where 
“clogging” could occur. 
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