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Failure of Dielectrics Depends
on the Concentration of Impurities

R.Gonella, Microlectron.Engg.55, 245, (2001) 

 Dielectrics can be in contact with a 
metal (Cu), a diffusion barrier 
(Ta, TaN, TiN, W, Al…) or 
a hard mask (Si nitride).

 Dielectrics and metals should be 
inert, but some interaction is 
necessary to promote adhesion.

 Reactions and diffusion needed 
for adhesion adversely affect the 
reliability of interconnect 
structures.

 Interactions are governed by 
reactions between the dielectric 
and the deposited film and the 
diffusion of injected material due 
to concentration gradients and an 
applied electric field.
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Our Proposed Cu Injection Mechanism

 Cu interacts with the interfacial 
oxygen and moisture  to form non-
stoichiometric oxide (CuxOy)

 The combination of moderate 
temperatures (< 300 ˚C) and an 
external electric field during operation 
may induce the breakdown of the 
copper oxide to ions.

 The Cu oxide, acts as the source of 
the Cu ions that are available for 
diffusion.

 Cu ions, driven by the applied field, 
drift through the dielectric.
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R. Achanta, W.N.Gill, J.L.Plawsky and G.Haase., JVST B, 24, 1417, (2006).
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Copper Injection Depends on the Hydrophilic
Nature of the Dielectric

Increasing 
Hydrophobicity
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Increasing hydrophobicity leads to less metal ion injection.
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Modeling Copper Ion Drift/Diffusion

  
∂2V
∂x2

= −
qC
kDε 0

Continuity Equation

Nomenclature

C : concentration of Cu+

V : voltage
µ  : mobility of species
D : diffusivity of Cu+

kB : boltzmann constant
q : elementary charge
kD : dielectric constant
εo : permittivity of vacuum
T : temperature

 Species: Cu+ ions 
 Surface reaction to form Cu oxide and Cu ion 

source is very rapid.
 Cu+ mass flux consists of thermal and field 

assisted diffusion (drift):

Poisson equation

 
µ =

qD
kT

Einstein Relation

  
∂C
∂t

= D ∂2C
∂x2 + µ

∂
∂x

C ∂V
∂x
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Boundary Conditions-Failure Criterion

  t = 0 C x,t( )= 0 V 0,t( )= 0 V L,t( )= 0

  x = 0 C 0,t( )= Ce V 0,t( )= Vo

 Initial Conditions:

 Boundary Conditions:

Failure is assumed when E(L) exceeds intrinsic breakdown strength, Ebd

  

x = L V L,t( )= 0

C L,t( )= 0 or J = −D ∂C
∂x

− µC ∂V
∂x

= 0
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Concentration Profiles
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Simulation parameters:

Ce=1017 at/cm3,   D=10-20 m2/s,   T=250 ˚C,  L=200 nm,   

V0=20 V, kD=2.7,   Eapp=1 MV/cm

J=0

C=0
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Electric Field Profiles
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 Steady state quickly reached for C(t,L)=0.

 Field increase is significant only for J(t,L) = 0 boundary condition at x=L.

 Steady state is reached in the body of the dielectric but not at x=L until long 
after breakdown for the J(t,L)=0.
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Mass Transfer Time f(Ce,T,Eapp) vs Ce Curve 
Resembles Actual TTF Vs Cu Concn. Plot
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Predicted model trends follow the actual trend in experimental data on time-to-failure for 
Metal/TEOS/Si capacitors.

Key Points: a) Solubility of dopant is critical b) Matching of experimental data 
shows that J = 0 boundary condition is the correct one.

EXPERIMENT MODEL
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Time to Failure-Intrinsic and Extrinsic Effects

 Mass transfer effects (diffusion) alone are insufficient to totally describe dielectric 
failure.

 Failure can arise due to exposure to high temperatures or exposure to high fields, 
even in the absence of a dopant like Cu.  Mass transfer promotes failure and defines 
how failure depends upon impurities.

 Thermally activated mechanisms have an Arrhenius dependence on temperature.  
Ea is energy for bond disruption and diffusion vacancy creation. A is related to lattice 
vibrational frequency.

  
TTF(s) = Aexp

Ea − γ Eapp

kBT









 f (Ce ,T , Eapp )

Intrinsic “thermochemical” 
effects

Mass transfer effects  

A = 2 − 70 × 10−13

Ea = 1.15eV
γ = 0.45 − 0.8
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Considering Field Effect on Intrinsic Bond 
Breakage-After E-model
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• Need improved theory to properly account for  both 
temperature and electric field effect.  

• Comsol simulation helped us to uncover the missing physics. 

A = ( 2 to 70)X10-13

γ = (0.45 to 0.8)

*Data:  S-S.Hwang, S-Y Jung, Y-C Joo, J.Appl.Phys. 101,074501 (2007)

Th-SiO2(100 nm)

Si

Cu

Model Parameters
Ce=3X1018 at/cm3

L=100 nm
kD=4
Ebd=10 MV/cm
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New Model Based on Physics:E2
app Dependence of 

Time to Failure

 The time to failure depends on 
E2

app

  
TTF(s) = Aexp

Ea − γ Eapp
2

kBT









 f (Ce ,T , Eapp )

 The induced dipole moment 
energy term (E2 dependent) may 
be significantly higher than the 
permanent dipole moment energy 
term (E dependent) in the 
presence of copper ions.

  

A = 2 × 10−13

γ = 0.015
Ea = 1.15

  
Ea

* = Ea − pEloc −
1
2

α Eloc
2
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Mass Transfer Model and Poole-Frenkel 
Conduction Based Model

P-F conductionMass Transfer Model

Mass transfer model reproduces the low field effects described by the P-
F formulation. P-F model requires different constants determined 
separately at each temperature

  
TTF s( )= exp 12.3 − 5.87 Eapp( )

  
TTF(s) = Aexp

Ea − γ Eapp
2

kBT









 f (Ce ,T , Eapp )
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Nanoporous Materials Model

 Results from 1-D model prompted the development of a 2-D model 
with discrete pores.

 Incorporates the elastic drift formulation.

 Unit cell model, periodic in the y-direction with thickness, δ.

 The dielectric is 100 nm thick (L) with 2 nm pores (2ro).

 Model considers a range of porosities from 0 - 50%. 

– No pore size dependence, yet.

 The pore dielectric constant can be varied independently of the 
matrix.

y
x
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Model Equations - 2 or 3-D

 Continuity and Poisson’s Equations

  

∂Ccu

∂t
= −

r
∇g −Dcu 1 +

α cu

kBT






Ccu













r
∇Ccu − µcuCcu

r
∇V













 −
r
∇g kDεo

r
∇V( )= qCcu

  

t = 0 Ccu = 0 V = 0
x = 0 Ccu = Ce V = Vo

x = L Dcu 1 +
α cu

kBT






Ccu













r
∇Ccu + µcuCcu

r
∇V = 0 V = 0

y = 0,δ & pore surfaces

Dcu 1 +
α cu

kBT






Ccu













r
∇Ccu + µcuCcu

r
∇V = 0

 Initial and Boundary Conditions

Cu ions (Ccu)
Cu diffusivity (Dcu)
Cu elastic stress constant (αcu)
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Failure Location Depends on the Pore 
Dielectric Constant

 Failure location depends upon 
the effective pore dielectric 
constant.  

 Failure always occurs 
somewhere on the pore surface 
where the field peaks.

 Ion flow streamlines (lavender) 
follow the contours of the pores 
and are concentrated near the 
surface of the pores.

– Percolation path once failure 
occurs will follow along the 
surface of the pores.

 Simulations predict that the 
time-to-failure increases with 
increasing porosity.

Cathode
End

kpore = 1.0 

kpore = 10.0 

Failure
Point

Failure
Point

Field Strength

Ebreakdown = 2742

Field Strength

20% Porous SiO2
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Conclusions 

 New models were developed that tie the solubility and mass transfer of Cu in the 
dielectric and the thermochemical interaction of Cu ions with the dielectric to 
better explain and predict Cu enhancement of the time to failure.

– Model successfully simulates and explains all the experimental data on SiO2.
– Comsol was instrumental in helping uncover the physics governing the 

process.

 The results of the new model offer testable hypotheses regarding the reason for 
Cu failure enhancement and directions for developing new dielectric and barrier 
materials.

 Next steps are:
– 2 and 3-D simulations incorporating negatively charged (moisture) species 

that form the Cu ions.
– Anode reactions for the Cu ions
– Adsorption/desorption of moisture from pores (weak form on pore 

boundaries).
– Using Comsol predictions for failure to help guide experiments.
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Elastic Drift/Diffusion1 Term-Accounting for High 
Concentrations

1V.P.Romanov,Phys.Stat.Sol.(a). 70,525 (1982)

When the concentration of copper ions in the dielectric becomes very high, (i.e 
when C(x)>>kBT/α where α is an elastic stress constant to account for the 
interaction between the ions and the dielectric and is ~ 2X10-44 J.m3)1 elastic 
drift /diffusion flux becomes important and should be included in the analysis

  
J (t,x) = −D ∂C

∂x
−

α D
kBT







C ∂C
∂x

− µC ∂V
∂x

Elastic drift/diffusion flux term

to account for “ion stuffing”

kBT/α =3X1017 at/cm3 @ 250 0C
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Importance of Including Elastic Drift

 Inclusion of elastic drift term causes a great change in the C(L) without 
much effect on the time to reach breakdown.

 In the figure the solid line is without the elastic drift term while the dotted 
lines are with the elastic drift included in analysis.

 The shaded region represents the uncertainty in the value of Ce for SiO2
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Comparison: With and Without Elastic 
Drift/Diffusion

 Greater depth of penetration  
in the body of the dielectric 
with the elastic drift/diffusion 
term included.

 At the cathode (x=L) there is a 
greater back-drift of ions due 
to the additional elastic 
drift/diffusion term and steady 
state is quickly reached 
without too much build up of 
charge.

 At low applied fields(~0.4 
MV/cm) the electric field at 
x=L,E(L) never reaches Ebd as 
steady state is reached prior to 
it.

High field reliability testing may give erroneous 
estimate of lifetime at operating conditions

250 0C,1 MV/cm,Ce=3X1018 at/cm3,kd=4
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Porous Dielectrics– State at Breakdown

• Porous dielectrics will be used in future integrated devices.  Manufacturers 
worry about premature failure.

• Model uses a unit cell approach with a 100 nm thick dielectric and 2 nm 
pores.

• Mass transfer model alone predicts an increase in time to failure with porosity 
due to a decrease in the mass flux through the solid (dry pores only).
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