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Abstract: Various chromatography systems are 
today widely applied for both analysis and 
preparation of chemical compounds from 
complex mixtures. Current trends aim at the 
miniaturization of such systems, for instance on 
microchips. One approach is to arrange arrays of 
small pillars in a micro channel. The pillar 
surfaces are functionalized such as to adsorb 
specific substances from a bulk fluid which 
flows through the channel. The performance of 
such miniaturized chromatography systems is 
particularly sensitive to the geometric shape 
pattern of the pillar array. Dead volumes that are 
often formed at the channel inlet, outlet and 
boundaries significantly contribute to the 
unwanted effect of bulk flow dispersion. The 
same is true for miniaturized chromatography 
systems using porous particles in a packed bed. 

We hence have implemented a two 
dimensional chromatography model for the 
analysis and optimization of structured micro 
pillar arrays. Dynamic surface interaction of 
solved molecules is taken into account by the 
kinetic Langmuir model. Variations of the pillar 
array geometry lead to deviations in the outlet 
concentration profiles. These deviations can not 
be described by the one dimensional models that 
are typically used for the simulation of 
chromatography on larger scales where the sizes 
of the channel and of the functionalized media 
differ by several orders of magnitude. 

We also have implemented a two 
dimensional model for studying the interplay of 
transport and sorption processes in packed bed 
chromatography with porous particles. 
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1. Introduction 
 

Miniaturized chromatography systems are 
potentially important as unit operations for the 
separation and analysis of complex mixtures in 
lab-on-microchip technology. The performance 

of such systems mainly depends on a large 
spread between residence times of the studied 
molecule species and at the same time on low 
axial dispersion [1]. Miniaturization helps to 
achieve the latter goal due to laminar flow and 
the absence of turbular mixing at low Reynolds 
numbers in the micro-channels. Another key 
advantage of miniaturized systems lies in the 
requirement of very small sample volumes. 
However, the technical separation must be 
achieved on a short axial distance, and numerical 
simulations must be able to preserve rather 
sharp-edged concentration profiles. 

Chromatography systems are usually 
modeled in only one spatial dimension [2]. One 
dimensional models are computationally less 
complex and allow quite accurate simulations of 
large-scale chromatography systems. On the 
other hand, one dimensional simulations can not 
account for the specific 2D geometry of pillar 
arrays. We hence apply a two dimensional 
chromatography model for studying the impact 
of geometric shape patterns in microfluidic 
separation devices on the shape of breakthrough 
curves, and compare the results with one 
dimensional simulations. 

Our analysis is based on hypothetical 
chromatography systems with micropillars that 
are arranged in several distinct shape patterns. 
The surfaces of these pillars are assumed to be 
functionalized with receptors that reversibly bind 
specific molecules from the fluid phase. The 
migration of molecules through the 
chromatography column is slowed down by 
these reversible binding processes as compared 
to the convective flow of the bulk fluid. 
Molecule species with high surface affinity are 
more strongly retained and hence separated from 
molecules with lower surface affinities. 
 
2. Multiphysics Modeling 
 

The two dimensional model is organized in 
submodels for transport, dispersion and 
adsorption. We first set up a model with 
adsorption on the pillar surfaces, and later 
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generalize this model by adding diffusion and 
sorption processes inside porous chromatography 
media. 
 
2.1 Geometry 
 

We compare chromatography devices with 
identical number and size of micropillars. Figure 
1 shows two basic shape patterns.  
 
2.2 Transport 
 

We neglect changes of viscosity and density 
due to adsorption of molecules from the bulk 
liquid to the pillar surfaces and consider the 
velocity profile invariant and in particular 
independent of the local molecule concentration. 
The Navier-Stokes equation for incompressible 
media can consequently be calculated separately 
from the dispersion and adsorption processes of 
the transported molecules:  
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Here, P denotes pressure, µ viscosity and ρ 
density of the bulk fluid. The velocity profile V

r
 

is precalculated and stored for later use in 

solving the convection-dispersion equation: 
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Here, D denotes the dispersion coefficient and c 
the molecule concentration in the bulk fluid. The 
flow is laminar due to the microscale of the 
whole system. 
 
2.3 Sorption 
 

The molecules are transported through the 
chromatography column and temporarily 
immobilized at the pillar boundaries. For this 
immobilization process we assume a classical 
Langmuir kinetic: 
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Here, qmax denotes the overall number of binding 
sites, q the receptors that are actually occupied, 
and kads and kdes quantify the adsorption and 
desorption rate, respectively. The molecule 
concentration c in the bulk fluid is also taken at 
the pillar boundaries. 
 

 
Figure 1: Two basic geometries. Top: (5+4)×25 shifted pillar geometry, bottom: 5×45 straight pillar geometry



 
3. Implementation 
 

The model equations for transport, diffusion 
and sorption are numerically solved over the 
interstitial subdomain between the pillars and on 
the boundary of each pillar. The fluid velocity 
profile is first determined in Navier-Stokes 
application mode and then used as input for the 
coupled calculation of the convection-dispersion 
and sorption processes. Sorption is modeled as 
time dependent outward flux -Jn onto the pillar 
boundaries, resulting in a Neumann boundary 
condition:  
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The Langmuir model is implemented in a weak 
formulation on each pillar boundary (compare 
[3]). Table 1 shows the boundary conditions for 
all application modes (AM). 
 

AM Boundary Condition Variable & 
Value 

ns Inlet 
Outlet 
All other 

Inlet velocity 
Pressure 
No slip 

sup
0

v
p =
−

 

cd Inlet 
Outlet 
Pillars 
All other 

Concentration 
Convect. flux 
Flux 
Insulation 

0

n

c

J
−
−
−

 

wb Pillars 
All other 

Weak term 
inactive 

/weak dweak
−
 

 
Table 1: Boundary conditions 
 
4. 1D/ 2D parameter conversion 
 

In one dimensional chromatography models 
the geometry is only taken into account by 
means of the column porosity ε , that is the 
volume fraction of the interstitial column void. 
The fluid velocity acts in axial direction only, 
and the sorption process is usually considered as 
outflux. The convection-diffusion equation can 
hence be rewritten as follows:  
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Here, z denotes the axial distance from the 
column inlet and Da is the axial dispersion 
coefficient. In order to compare 1D and 2D 
simulations we need to determine consistent 
values of the interstitial velocity vint and the 
receptor density 1

max
Dq . If the superficial velocity 

in the 2D model is denoted by vsup we get: 
 

sup intv v ε= ⋅                                                  (6) 
 
The receptor density 1

max
Dq  that is used for qmax in 

the Langmuir sorption model (Equation 3) in the 
one dimensional model is defined with respect to 
the volume fraction that is occupied by the 
pillars. This value is hence a function of the 
receptor density per total column volume maxq  
and column porosity ε : 
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The total receptor density in the one dimensional 
model is proportional to the surface specific 
receptor density in the two dimensional model, 
which is only here denoted by 2

max
Dq  in order to 

avoid ambiguity:  
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Here, n denotes the amount of pillars, and the 
channel height h cancels out. 
 
5. Solution 
 

The minimum element size of the finite 
element mesh was estimated by step-wise 
refinement, within the given limits of memory 
and computational time. We used the results on 
the finest mesh as reference in order to estimate 
the approximation error as illustrated in Figure 2. 
Based on these estimates we chose a maximum 
element size of 41.5 10x m−Δ = ⋅ , resulting in 
77348 finite elements. 

The velocity profile of the liquid phase is 
first computed in COMSOL by solving the 
Navier-Stokes equations for incompressible flow 
with the direct PARDISO solver. This profile is 
then considered invariant. Convection, 
dispersion and sorption of the molecules are 



subsequently calculated with the iterative 
GMRES solver and a geometric multigrid 
preconditioner. 
 
6. Results 
 

Figure 3 shows typical simulation results at 
an intermediate time during the column load 
phase for two different arrangements of the pillar 
array. The array pattern obviously influences the 
shape of the concentration front. The larger 
spaces at the channel walls in model b) cause 
smearing of the front. This is a major problem 
for miniaturized chromatography systems where 
the bed is less dense at the channel walls as 
compared to the channel center. A straight pillar 
arrangement as in model a) yields a much 
sharper and less smeared concentration front. 
Figure 4 shows the impact of the front smearing 
effects inside the chromatography column on the 
cross section averaged breakthrough curves at 

the column outlet.  
The reduced steepness of the breakthrough 

curve of model b) usually indicates increased 
dispersion in the column. The difference between 
both breakthrough curves is exclusively caused 
by geometry and could not be explained by a one 
dimensional model. We will further analyze the 
analogy between 1D and 2D chromatography 
models in the next section. 
 
7. Comparison with 1D Dispersion 
 

In section 4 we show how to transfer several 
model parameters from the 1D to the 2D case. 
The system geometry impacts on both interstitial 
velocity vint and receptor density qmax via column 
porosity ε . However, the impact of system 
geometry on axial dispersion in the one 
dimensional model is much more complex, since 
the dispersion in the two dimensional model can 
have a significant orthogonal component. We 

 

 
Figure 3: Simulation results at an intermediate time for varied geometries of the pillar array. a) straight b) shifted. 
Flow from left to right, blue: low concentration, red: high concentration 

 
Figure 2: Relative approximation error over number
of mesh elements 
 

 
Figure 4: Cross section averaged outlet 
concentration profiles for different pillar arrays  



hence estimated effective dispersion coefficients 
by fitting the 1D model to 2D simulation results 
in order to quantify apparent axial dispersion.  

The one dimensional chromatography model 
was implemented in MATLAB, solved with 
ode15s, and fitted with the Levenberg-Marquardt 
algorithm lsqnonlin. The 2D dispersion 
coefficient 75 10D −= ⋅  results in apparent 1D 
dispersion coefficients of 73.42 10−⋅  for the 
straight 5×45 pillar array and of 61.36 10−⋅  for 
the shifted (5+4)×25 pillar array. The 
breakthrough curves of the 1D and 2D models 
match very well for the straight pillar geometry, 
but a significant residual remains in case of the 
shifted geometry, as illustrated in Figure 5. This 
result underlines the necessity to use 2D or even 
3D models for the simulation of more complex 
geometric pillar geometries.  
 
8. Porous Media 
 

We also implemented a model for studying 
miniaturized separation devices with porous 
chromatography media. Here, the pillars are 
replaced by cylindrical porous particles. Figure 6 
shows a typical result. The molecules are again 
subject to convection and dispersion in the 
column bulk fluid, but can penetrate the particle 

boundaries and diffuse into the porous media 
where they are also immobilized by specific 
receptors at the pore walls. Figure 7 shows 
simulated breakthrough curves for varied pore 
diffusion coefficients:  
 

7 7 8 8 9[5 10 ,1 10 ,5 10 ,1 10 ,5 10 ]poreD − − − − −= ⋅ ⋅ ⋅ ⋅ ⋅  
 
A pore diffusion coefficient of 75 10poreD −= ⋅  
yields a rather steep breakthrough curve at the 
column outlet. With decreasing diffusion 
coefficients the porous particles are filled and 
emptied more slowly, resulting in an earlier 
begin and a more pronounced tailing of the break 
through curve. 
 
9. Conclusions 
 

We implemented various models for 
miniaturized column chromatography in one and 
two dimensions. The impact of geometrical 
shape patterns was analyzed and compared. We 
found that local shape irregularities of the pillar 
array in particular at the channel boundaries can 
cause smearing of the internal concentration 
fronts and that the resulting impact on the 
external breakthrough curve at the column outlet 
can not be predicted with 1D models. However, 

 
Figure 6: Simulation result for a chromatography system with porous media. Flow from left to right. Blue: low 
concentration, red: high concentration 

 
Figure 5: Best fit of breakthrough curves between 1D 
and 2D models with shifted pillar geometry 

 
Figure 7: Outlet concentration profiles for different 
pore diffusion coefficients. 



adjusting the one axial dispersion coefficient in a 
one dimensional model to an apparent value can 
significantly decrease the inevitable discrepancy 
between 1D and 2D simulation results.  

We also implemented a two dimensional 
model for the simulation of chromatography with 
porous particles. This model was applied for a 
parameter study with varied pore diffusion 
coefficients. However, a 3D model will be 
necessary for the analysis of packed bed 
chromatography where spherical particles are in 
direct contact, and the two dimensional 
projection leaves no channel for convective 
transport. This will be subject of further studies. 
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