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Abstract: Cantilever vibration modes
were simulated with the finite element anal-
ysis and solver software package COMSOL.
In the 1st approach the model consisted in
an excitation piezo, a holder plate and a chip
where the cantilever was mounted on. A si-
nusoidal voltage signal was applied to the
piezo in the simulation, which resulted in
movements of the holder plate and finally
led to the excitation of the cantilever. In the
2nd approach the model consisted only in a
holder plate and the chip with the cantilever.
The cantilever chip was examined in an ac-
celerated coordinate system, in which the si-
nusoidally excited chip remained at rest. Re-
sults obtained by the different models were
compared to each other. The advantage
of the 2nd approach is its superior simplic-
ity, which results in shorter processing time
and lower calculation burden. The process-
ing time according to the 2nd approach was
found to be 3 times shorter than that of the
1st approach. We thus suggest considering
to perform simulations of cantilever vibra-
tion modes within suitably chosen acceler-
ated frames of reference.
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1 Introduction

An atomic force microscope’s (AFM) can-
tilever is a miniature elastic beam with its
characteristic vibration modes. Different vi-
bration modes can be excited by applying
harmonic loads from a piezoelectric element.

Vibration modes of a micro cantilever
are characterized by numerous eigenmodes,
each having its own natural frequency. Ra-
man et al. [1] have shown that the main

eigenmodes consist of bending eigenmodes
transverse to the plane of the cantilever and
of torsional modes. Experimental measure-
ments aiming at characterizing the dynam-
ics of the AFM cantilevers are limited by
by the miniature dimensions of the beam.
Some methods of determining the local vi-
bration amplitudes for cantilevers vibrating
in the flexural modes have been described.
Examples of this include physical measure-
ments using an optical beam detection sen-
sor [2] and a locally resolving setup using
a Michelson heterodyne interferometer [3].
Numerical methods have also been applied
in analyzing the vibrations of different types
of cantilevers [4] [5]. This current work de-
scribes the process of modeling the dynamics
of such a cantilever beam using finite ele-
ment methods and analytical ideas in order
to reduce processing load and time.

2 Experiments,
Computing System

In the dynamic AFM application mode, the
cantilever is externally oscillated at or close
to its resonance frequency. The oscilla-
tion amplitude, phase and resonance fre-
quency are modified by tip-sample inter-
action forces; these changes in oscillation
with respect to the external reference oscil-
lation provide information about the sam-
ple’s characteristics. E.g. the topography
of a sample surface can be imaged by scan-
ning a tip attached to the cantilever over the
surface. The geometrical objects needed to
model these dynamics essentially consist of
the microscale cantilever with a sharp tip
(probe), a piezo element and an aluminum
holder. Fig. 1 shows these three components.
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Fig. 1: CAD Model of the geometry objects.The dimensions are given in millimeters.

Throughout this paper a cantilever of di-
mensions length L = 450µm, width W =
50µm and thickness T = 2µm was investi-
gated, which was built from crystalline sili-
con. In the experimental setup correspond-
ing to the models the cantilever was excited
by a 0.5 mm thick piezo plate of the ceramic
PIC255 produced by PI (Physik Instrumente
GmbH & Co. KG, Karlsruhe/Palmbach,
Germany). Piezo material data for PIC255
were unavailable from PI, however, and we
followed the recommendation of PI to use
the data of PIC155 in simulations instead,
which was said to show up a very similar
behavior. The computing system used for
simulations comprised as hardware an AMD
Athlon 64 X2 Dual Core 3800+ processor op-
erated at 2 GHz and 3.25 GB RAM. The sys-
tem was operated by Microsoft Windows XP
Professional, Version 2002, SP2 (32-bit ver-
sion), and the software COMSOL 3.4.0.250
together with MatLab 7.1.0.246 (R14), SP3
was installed.

3 Models

3.1 Model 1

With the aim of realizing a numerical pro-
cedure for solving the continuum mechanics
of all the components described in Fig. 1,
all their physical and dynamical aspects had
to be considered and duly described. This
subsection gives an insight of the major as-

pects that were crucial in development of
the first model, which involved two different
COMSOL modules, the structural mechan-
ics module and the MEMS module.

Options of both modules were combined
in a single multiphysics model such that a
solid, stress-strain domain from COMSOL’s
structural mechanics package and a piezo
solid domain from the MEMS package was
built. The geometrical components were
designed using Autodesk Inventor and im-
ported into the COMSOL environment us-
ing the CAD import tool. A set of bound-
ary conditions was introduced in order to
correctly couple the different compounds of
the model. These consisted of two mechan-
ical and one electrical boundary conditions.
One of the former conditions consisted in the
fixation of the chip-holder to the piezo ele-
ment. The other mechanical boundary con-
dition specified the fixation of the lower sur-
face of the piezo element. The piezo’s axis of
polarization was defined to be along the z-
axis. The electrodes were defined such that
the electric field across the element had only
a z-component. Due to these conditions the
piezo was excited mainly to vibrations in z-
direction. The uppermost face for the piezo
was defined as the ground potential thereby
realizing the electrical boundary condition.

The load versus response behavior is cru-
cial in any FEM model. This mainly de-
pends on the material properties of all com-
ponents within the system. The matrices



containing material property data of the me-
chanical components were imported from
COMSOL’s material library. Data matri-
ces of the PIC 155 piezo element used in
this model are presented in (1), (2) and (3),
where cE is the elasticity matrix, e the cou-
pling matrix and εS the relative permittivity.

cE =


10.1 6.33 6.33 0 0 0
6.33 10.1 6.33 0 0 0
6.33 6.33 1.01 0 0 0
0 0 0 1.91 0 0
0 0 0 0 1.91 0
0 0 0 0 0 2.38


×1010Pa

(1)

e =

[
0 0 0 0 10.3 0
0 0 0 10.3 0 0
−5.6 −5.6 12.8 0 0 0

]
× C

m2

(2)

εS =

[
873 0 0
0 873 0
0 0 680

]
(3)

3.2 Model 2

The design of the second model aims at a
simplification of the simulation process. For
this purpose a frame of reference is chosen
such that the sinusoidally excited contact
area of the piezo and the cantilever chip
stays at rest within this frame (Fig. 1(b)).
The multiphysics model in this case was set
using only the solid, stress-strain option.
The fix position of the contact area points
represents the only boundary condition to be
considered within this model. Since the sim-
ulation no longer takes place in an inertial
system but in an accelerated frame of ref-
erence, fictitious forces Ff have to be taken
into account.

Figure 1: Schematic representation of the
inertial system (a) and the accelated frame of

reference system (b) as defined for model 1 and
2 respectively. Blue rectangle: Chip plus

cantilever.

The vertical coordinates z, z∗ within the
two different frames of reference are related
via

z = z∗ +Asin(ωt) (4)

The vertical dynamics of a mass element m
in the inertial system (Fig. 1(a)) is described
by Newtons second law

Fz = mz̈ (5)

where Fz denotes the vertical component of
the sum of all forces acting on the mass. In
general Fz can be categorized into internal
forces (elastically transmitted through the
material) and external forces (electric, mag-
netic, frictional, viscous, gravitational). For
the treatment in this paper we neglect all
external forces besides those acting on the
boundary between the chip and piezo due
to excitation. Insertion of equation (4) into
equation (5) leads to

Fz = mz̈∗ −mAω2 sin(ωt),

which can be converted to

F ∗
z := Fz +mA2 sin(ωt) = mz̈∗. (6)

Equation (6) represents Newtons second law
in the accelerated frame of reference. Here
one has to take into account a fictitious force
Ff = mAω2 sin(ωt) in addition to the forces
Fz present in the inertial system. Instead
of forces F one considers loads Lz := Fz/V
in continuum mechanics, where V denotes a
volume element. Hence Newtons second law
reads in terms of loads

L∗ := Lz + Lf = ρz̈∗ (7)

with the load Lz := Fz/V , the fictitious load
Lf := ρAω2 sin(ωt) and the material density
ρ := m/V . It is worthwhile to note that the
fictitious load depends on the excitation fre-
quency ω.

During the simulation the fictitious load
was calculated and updated after each step
in excitation frequency. The excitation am-
plitude was kept constant at a value A, de-
fined as the average value of the vibration
amplitudes of the contact points on the in-
terface between the holder and the chip in
model 1.



Figure 2: Geometry of the meshed single-silicon
cantilever beam with a pyramidal tip.

4 Methods

The relation between displacement and
strain is essential in the formulation of FEM
elements [6]. Strain can be defined as the ge-
ometrical expression of displacements caused
by the action of stress on a physical body.
Nodal displacements (u, v and w) were the
primary unknowns in this work. The stress
field in both, model 1 and 2, originated from
the vibration of the piezo element. The shear
and normal strain present on the chip and
the cantilever were therefore known. They
were determined through the calculation of
internal stresses within the piezo element.
From the strain-displacement relations the
displacements sought could be determined.
These relations can be stated in matrix-
operator form according to [6] as

εx
εy
εz
γxy

γyz

γzx


=



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


 u

v
w

 ,

(8)
where ε and γ represent normal and shear
strain respectively. Within COMSOL’s
structural mechanics package there are well
defined and highly optimized tools for solv-
ing such systems. After a thorough defini-
tion of the model and the boundary condi-
tions within the COMSOL environment as
discussed in the previous sections a solver
routine was run to compute the solution.
Nodal displacements along the z-axis of the
cantilever beam were of special interest.

These displacements were used to determine
the cantilever displacement amplitudes and
its resonance frequency. To arrive at this
information, calculations were made for a
number of frequencies using the frequency
response option.

Essentially the electro-mechanical FEM
equations representing piezoelectric materi-
als are summarized into a couple of equa-
tions and are grouped into two categories.
These are the stress-charge form and the
strain-charge form. The former is defined
within COMSOL as

T = cES − eE (9)

D = e+ εSE, (10)

where T is the stress vector, S the strain vec-
tor, E the electric field vector, D the electric
flux density vector, cE the elasticity matrix,
e the piezoelectric coupling matrix in stress-
charge form and εS the matrix of relative
permittivity. The stress-charge form is used
throughout this work. Material characteris-
tics are stored in the matrices cE , e and εS ,
which are presented in (1), (2) and (3).

In model 2, since the fictitious force de-
pends on the excitation frequency, the ficti-
tious load Lf had to be calculated iteratively
for each calculation step. The frequency re-
sponse was therefore implemented in Mat-
Lab. Values of Lf were calculated at ini-
tialization and then passed on to an auto-
matically generated COMSOL script in vec-
tor form. In the calculation a loop was im-
plemented using frequency as the loop vari-
able. For each frequency step the respective
value of Lf was read, the solution was calcu-
lated and the results were saved in a matrix.
At the end of the for loop the results were
assigned to the fem.sol structure for post-
processing purposes.

5 Results and Discussion

By analytical methods the flexural natural
frequencies of a cantilever can be calculated
[5]. Using the cantilever geometry described
in Section 2 and the silicon material prop-
erties density ρ = 2.33g/cm3 and Young’s
modulus E = 169GPa we arrived at a fre-
quency

f
(1)
theo = 13.586kHz



for the first vertical flexural natural mode.
This calculated value is located in the
resonance frequency specification range
f

(1)
manuf = (13 ± 4)kHz stated by the man-

ufacturer of the cantilever. In the neigh-
borhood of this value simulations were per-
formed within the frequency response option
of COMSOL. Fig. 1 shows the simulated am-
plitude of a point at the end of the can-
tilever in dependence on frequency. Clearly
a peak at f (1)

model1 = (13600±5)Hz is visible.
The simulation time for the 40 data points
amounted to tmodel1 = 54min. Furthermore
the displacement amplitudes of points on the
cantilever surface at the frequency f

(1)
model1

are shown in Fig. 2. The figure clearly indi-
cates that the cantilever vibrates in the first
vertical flexural natural mode.

Figure 1: Amplitude of the end of the
cantilever vs. excitation frequency. Solid

circles: model 1. Open circles: model 2. Solid
lines just serve as a guide to the eye.

Figure 2: Displacement amplitudes of the
cantilever vibrating at 13600Hz. Simulation

based on model 1. (Deformation exaggerated
due to specification of the deformed shape

option.)

The results within model 1 were com-
pared to simulations based on model 2. In
order to match the simulations within the
2 models, one has to determine the ampli-
tude A of oscillation in model 1 and feed

this value into the simulations according to
model 2. We observed that the piezo am-
plitude delicately depends on the boundary
conditions, describing how the piezo is em-
bedded within its environment. A freely os-
cillating piezo plate of the material PIC155
is ideally expected to vibrate with an ampli-
tude Atheo = d33 ·0.5V = 3.07×10−10m/V ·
0.5V = 0.1535nm. However, in a system
where the piezo plate is fixed with its sur-
faces to other components the vibration am-
plitude is substantially decreased. Further-
more deformations of other parts of the sys-
tem, e.g. the aluminum holder plate, also
have to be taken into account. Fig. 3 shows
that as well the piezo plate as the alu-
minum holder deform in directions parallel
to the piezo plate surfaces. In our simu-
lated system the vibration amplitude at 0.5
V excitation voltage and 13.6 kHz excita-
tion frequency amounted to Asim,piezo =
0.0395nm measured at the upper piezo sur-
face and Asim,holder = 0.0430nm measured
at the fixation points between the holder
plate and the cantilever chip. Further the
value Asim,holder was used as basis within
model 2.

Figure 3: Displacement amplitude in
z-direction of piezo plate and aluminum

cantilever holder. (Deformation exaggerated
due to specification of deformed shape option.)
The total system was simulated according to

model 1 at 13.6 kHz, cantilever and chip
components are suppressed within the figure.

Results of simulations according to
model 2 are included in Fig. 1. They match
well the results based on model 1 and show
up a similar resonance frequency peak at
f

(1)
model2 = (13600 ± 5)Hz. Simulation time

amounted to tmodel2 = 16min. In conclu-
sion the ratio of processing times of simula-
tions following the 2 models is determined
as tmodel1/tmodel2 = 3.375 ≈ 3.



The amplitude values obtained by both
models near the resonance frequency show
differences. At the resonance frequency
of 13600Hz a relative deviation (250 −
200)/250 = 20% occurs and at 13605Hz the
deviation is even more than a factor 2, but
reversed. Based on the definition of the co-
ordinate system in model 2 the amplitudes
derived within this model are expected to
be by A = 0.0430nm smaller than the ones
derived by model 1. Compared to ampli-
tude values of more than 100 nm obtained
by simulation near the resonance frequency,
however, this correction can be neglected.
We rather expect that numerical inaccura-
cies sum up differently within the two mod-
els especially near the resonance. As damp-
ing of the cantilever was neglected in both
models amplitudes diverging to infinity are
expected for frequencies near the resonance.
A proper treatment of the system should in-
clude damping, however, damping was ne-
glected, as it exceeded the capacity of the
computer system in the used configuration.

Resonance frequencies determined by
simulations according to the 2 models agree
well with the analytically derived frequency
f

(1)
theo. The difference f (1)

model1−f
(1)
theo = 14Hz

of 0.1% can mainly be attributed to numer-
ical inaccuracies due to the usage of finite
elements.

6 Conclusions

Due to surging interests in operating an
AFM in atmospheric or aqueous environ-
ment, complex simulation models are be-
coming more and more crucial. The com-
plexity however considerably increases the
computational burden. Therefore a method
of diminishing processing load in simulations
by choosing a suitable accelerated coordi-
nate system was developed in the work pre-
sented in this article. The first vertical flex-
ural resonance of a cantilever was simulated
within different frames of reference. Within
both models the estimated resonance fre-
quencies f (1)

model1 = f
(1)
model2 = (13600± 5)Hz

excellently agree with each other. They also
agree well with the analytically derived reso-
nance frequency f (1)

theo = 13586Hz calculated
by the formula for a clamped-free rectangu-
lar beam. The amplitudes derived by the
two models, however, largely disagree near

the resonance frequency. We attribute the
differences mainly to the missing implemen-
tation of damping within the simulations.
Processing time of simulations in an acceler-
ated coordinate system according to model
2 was more than a factor 3 shorter than
for simulations in model 1. Combined with
other known solutions, which help to ease
calculation load, the presented method can
aid in decreasing the computing load and
processing time in simulations of AFM can-
tilever vibrations.
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