Mathematical Investigation and CFD Mathematical Investigation and CFD Simulation of Monolith Reactors: **Catalytic Combustion of Methane Catalytic Combustion of Methane**

Maryam Ghadrdan Maryam Ghadrdan

Norwegian University of Science and Technology (NTNU) and Technology (NTNU)

Why micro Why micro-fabrication? fabrication?

- \mathbb{R}^2 The high heat and mass transfer rates possible in micro-fluidic systems allow reactions to be performed under more aggressive conditions with higher yields than can be achieved with conventional reactors conventional reactors
- \blacksquare New reaction pathways deemed too difficult in conventional microscopic equipment, e.g., direct fluorination of aromatic microscopic equipment, e.g., direct fluorination of aromatic compounds (Chambers & Spink, 1999), could be pursued.
- \blacksquare Scale-up to production by replication of micro-reactor units used in the lab eliminates costly redesign and pilot plant experiments, thereby shortening the development time

Why micro Why micro-fabrication? (contd.) fabrication? (contd.)

- The presence of integrated sensor and control units could allow the failed reactor to be isolated and replaced while other parallel units continued production.
- These systems are capable of integrating all stages of a complete analysis, including sampling, sample pretreatment, chemical reaction, separation, detection, and data processing in a highly automated and efficient manner.

Ref: Jakeway, S. C.; de Mello, A. J.; Russell, E. L., Miniaturized total analysis systems for biological analysis. *Fresenius' Journal of Analytical Chemistry* 2000, 366, (6-7), 525-539.

What is this problem? What is this problem?

■ A two-phase (gas & solid) transient catalytic combustor model using a simplified flow field inside a single channel to test the advantages of COMSOL Multiphysics software.

Ref: R. E. Hayes and S. T. Kolaczkowski, *Introduction to Catalytic Combustion*. Amsterdam: Gordon and Breach Science Publ., **1997**

Catalytic Combustion

- The complete oxidation of a combustible compound on the surface of a catalyst.
- A flameless process occurring at lower temperatures and, therefore, emitting less nitrogen oxides (Hayes et al. 1997)
- **Catalysed combustion offers fewer constraints concerning** flammability limits and reactor design.
- The design of the catalytic combustion stage typically calls for monolith systems that offer high surface area but low-pressure drop. The monolith honeycombs are often made of cordierite coated with catalytically active material, whereby a washcoat, mostly alumina, is frequently used to enlarge the surface area.

2 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

 $\Delta H_{_{reac}} = 802368 + 0.0133 T^{2} - 14.625 T^{2}$

Why COMSOL? Why COMSOL?

It has an integrated modeling environment.

- \blacksquare It takes a semi-analytic approach: You specify equations, COMSOL symbolically assembles FEM matrices and COMSOL symbolically assembles FEM matrices and organizes the bookkeeping.
- **COMSOL** is built on top of MATLAB, so user defined programming for the modeling, organizing the computation, or the post-processing has full functionality.
- **If provides pre-built templates as Application Modes**
- \blacksquare It provides multi-physics modeling linking well known "application modes" transparently.
- **EXTERNAL COMSOL innovated extended multi-physics-coupling** between logically distinct domains and models that permits simultaneous solution.

Assumptions Assumptions

- The channel is cylindrical and the flow is axisymmetric and Laminar
- The porous medium is homogeneous and isotropic
- The interactions between the porous medium and the clear fluid is simulated by the Brinkman formulation [13]
- The solid matrix and the fluid are assumed to be at local thermal and concentration equilibrium with each other
- **Homogeneous reaction and heat radiation in the bulk phase are** ignored.

Mathematical Presentation Mathematical Presentation

Mathematical Presentation (contd.) Mathematical Presentation (contd.)

$$
\rho u \frac{\partial Y_{k}}{\partial z} + \rho v \frac{\partial Y_{k}}{\partial r} = \left(\frac{\partial J_{k,z}}{\partial z} + \frac{1}{r} \frac{\partial (rJ_{k,z})}{\partial r}\right) + \dot{\omega}_{k} W_{k}
$$
(4)

$$
(k = 1, ..., K_{s})
$$
(6)

$$
\rho c_{p} \left(u \frac{\partial T}{\partial z} + v \frac{\partial T}{\partial r}\right) = \left(u \frac{\partial p}{\partial z} + v \frac{\partial p}{\partial r}\right)
$$
(5)

$$
+ \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) + \frac{\partial}{\partial r} \left(r \lambda \frac{\partial T}{\partial r}\right)
$$

$$
- \sum_{k=1}^{K} c_{pk} \left(J_{k} \frac{\partial T}{\partial z} + J_{k} \frac{\partial T}{\partial r}\right)
$$

$$
- \sum_{k=1}^{K} h_{k} \dot{\omega}_{k} W_{k}
$$

Boundary conditions Boundary conditions

- **At the inlet of the channel: At the inlet of the channel:** Initial values for Velocity, Temperature and Concentration
	- **At the axisymmetric line of the channel: At the axisymmetric line of the channel:** Axial symmetry for all parameters
	- **At the outlet of the channel: At the outlet of the channel:** Convective flux is assumed
	- **At the wall: At the wall:** No slip condition is assumed

Simulation parameters for the bulk phase

Simulation parameters for the porous layer

Simulation conditions Simulation conditions

Temperature Temperature profile along the profile along the channel channel

Concentration Concentration profile along the profile along the channel channel

Velocity profile in Velocity profile in the bulk phase the bulk phase

Velocity profile in Velocity profile in the porous layer the porous layer

Summary of conditions in the simulations simulations

Nu = $\frac{Convective \text{ heat transfer}}{P}$ *Conductive heat transfer*

Concentration profile for cases 1 (up) **and 2 (down) and 2 (down)**

Temperature profile for cases 1 (up) and Temperature profile for cases 1 (up) and 4 (down) 4 (down)

Velocity profile for cases 1 (up) and 4 Velocity profile for cases 1 (up) and 4 (down)

Thanks for your attention Thanks for your attention