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Abstract: Glass containing nanoparticles
is a promising material for various photonic
applications due to the unique optical prop-
erties mainly resulting from the strong sur-
face plasmon resonance (SPR) of the sil-
ver nanoparticles. The characteristics of the
resonance can be modified by varying size,
shape and concentration of the particles. A
finite element method (FEM) implemented
in the software Comsol Multiphysics is used
to calculate effective permittivities of this
composite material. Two-dimensional struc-
tures of rods characterized by an effective
permittivity have been considered. In con-
trast to the preparation of photonic crys-
tals in silicon the deviations from the ideal
structures are more important for the struc-
tures under consideration here, because such
structures cannot be manufactured with the
same accuracy like the silicon counterparts.
Such deviations are a variation of the radii
of the rods and a variation of the filling fac-
tor. It was investigated how such deviations
influence the transmission of the structures.

Keywords: photonic/plasmonic structures,
silver nanoparticles, effective permittivity,
waveguides.

1 Introduction

In the last years the interest in nanostruc-
tures for optical applications increased dra-
matically. Metallic nanoparticles in a glass
matrix can be used to tailor different opti-
cal properties of photonic/plasmonic struc-
tures. DC electric field-assisted dissolution
can be used as a method to structure glass
templates containing such nanoparticles [1].
As a result of the procedure photonic crys-
tal slabs of hexagonal or square symmetry
are obtained. The structure is formed as
a two-dimensional (2D) lattice of regions of
a composite material containing the metal-
lic nanoparticles. The particles are usually

spherical but can be changed in shape by
mechanical stress or intensive laser pulses.
A basic ingredient for a theoretical analysis
of functional elements, prepared on the ba-
sis of such a material, is the calculation of
the optical properties of the composite ma-
terial. Based on such knowledge, waveguide
structures can be designed.

2 Properties of silver
nanoparticles

According to the experimental results spher-
ical and ellipsoidal silver nanoparticles have
to be considered. Spherical silver nanoparti-
cles have usually a radius of R = 15— 20nm.
Ellipsoidal nanoparticles can be described by
a geometrical factor L = a/c. L is the re-
lation between the two non-equal semi-axes
(a # b = ¢). The position of the ellip-
soidal nanoparticles in the glass matrix is
random, with parallel major semi-axes due
to the method of preparation. The opti-
cal properties of such a system are defined
by the ensemble of nanoparticles and are
dependent on the distribution in the ma-
trix. Effective medium theory is used to de-
scribe such a random distributions of metal-
lic nanoparticles. Instead of the ensemble of
particles itself, a homogeneous medium with
a certain effective permittivity e.sr, which
leads to the same optical properties is con-
sidered. For ellipsoidal nanoparticles this ef-
fective permittivity depends on the direction
and is a tensor of rank two. If the ellipsoidal
nanoparticles are oriented along the z-axis,
the tensor €.y is diagonal and the diago-
nal elements are: £/ £ azf?;f = ¢¢f/. The
permittivity of the silver nanoparticles is de-
scribed by Drude’s model.
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Here wy,, €y, 7y represent the bulk plasma fre-
quency, the contribution of interband transi-



tions and all nonconduction electron contri-
butions to the permittivity, and the damp-
ing of the electron oscillations. [2] The ef-
fective permittivity is a complex function of
frequency. The imaginary part characterizes
absorption of electromagnetic radiation by
silver nanoparticles.

3 Calculation of effective
permittivity

For the calculation of the effective permit-
tivity an finite element method (FEM) has
been used (cf. also [5, 4]). The electric field
is applied to the composite, located in the
plane capacitor. The energy density of the
electric field between plates of capacitor for
a homogeneous medium is given by:
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The density of electric energy W of the com-
posite in the capacitor is obtained from the
minimization of the functional F with po-
tential ¢(r) from:

W = Flp(r)] = =20 /V () [V (n)]2dr

2
(3)
The local electrostatic potential is calculated
from the following boundary-value problem:

V- [e(r)Ve(r)] =0 (4)
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Figure 1: Reff and §Rs§’ycf for different shapes
of nanoparticles. The filling factor is f = 0.3.

If € for one of the constituents of the com-
posite is complex, the density of energy W is
a complex function too. Real and imaginary
parts of e.¢s can be found independently.
For a given L (L =1,2,...,5) a series of 100

randomly constructed ensembles of nanopar-
ticles are investigated. The effective permit-
tivity is found by an average over the set of
ensembles. If L # 1 the tensor components
of €. were calculated.
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Figure 2: Se&ff and %sg’;f for different shapes
of nanoparticles. The filling factor is f = 0.3.

From Fig.[T] and Fig.2] can be seen that
e¢lf grows with increasing factor L. The
other diagonal element 5?3117 depends on ge-
ometry of particles very weakly because the
absolute value of b is fixed. e¢f > Ezgjf
holds for any geometry factors for the real
and image parts. The region of absorption of
electromagnetic waves becomes broader with
increasing L for e¢f/ element. The red line
corresponds to spherical nanoparticles.

4 Plasmonic structures and
statistical analysis
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Figure 3: Experimental realization of a periodic
plasmonic structure with 2D hexagonal lattice.
The lattice constant is 0.5um. The white areas
are the composite regions containing silver
nanoparticles.

Starting from the base material two-
dimensional photonic crystals can be con-



structed. Fig.[3]shows a photonic crystal re-
alized in the glass matrix containing silver
nanoparticles.

Fig.[3] demonstrates also, that the struc-
ture is not perfect. The nanocomposite ar-
eas, named rods further, are not of equal
shape and tend to be square instead of circu-
lar. In a first approximation it was assumed,
that the rods are represented by circles with
different radii. The distribution of the radii
in the sample is approximated by a Gaussian
distribution (cf. Fig.[).
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Figure 4: The distribution of radii in the
structure shown in Fig[3] Experimental results
(blue) are fitted by a Gaussian distribution
(red) The average radius for this sample is
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Figure 5: The effective permittivity ecss as a
function of wavelength and filling factor.

Results for spherical nanoparticles. The range
of wavelength is 1.4 < A < 1.5um

O\

A waveguide on the basis of such a struc-
ture can be constructed if one row of rods
is removed. This can be realized from the
very beginning using a structured mask in
the preparation of the sample or later by
means of laser radiation. The localization
of the electromagnetic field in a waveguide is

possible for this lattice if the contrast of per-
mittivity between the rods and the glass ma-
trix will be larger than $e,o4s — €giass > 4.5.
This contrast corresponds to a filling factor
of f = 0.37. The effective permittivity e.r¢
corresponding to different filling factors is
shown in Fig.[5]

It is supposed that the filling factor for
the nanocomposite has a Gaussian distribu-
tion with average f = 0.37. The data will
be used for the calculation of the electromag-
netic field in the non-ideal waveguides.

5 Photonic crystals and
Y-waveguide

First, an ideal two-dimensional photonic
crystal with hexagonal lattice structure is
considered. In contrast to the experimen-
tal realization the structure is translational
invariant in z-direction. The lattice con-
stant of this structure is a = 0.5um. The
dielectric medium is glass and the permit-
tivity of the rods is equal to the real part
of ecfyf, i.e. no absorption is considered. It
is assumed that the rods contain spherical
nanoparticles. The medium inside the rods
is isotropic. On the basis of this structure
Y-waveguides are investigated numerically.
The source of electromagnetic radiation is
located on the left side of waveguide. We
will consider electromagnetic waves with TM
polarization. For this polarization the elec-
tromagnetic wave has a z component of elec-
tric field E, and z, y components of magnetic
field H,, Hy.
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Figure 6: Projection of bands on waveguide the
direction I'-K in the first Brillouin zone
together with mode of a linear waveguide (red
line). Calculation is performed by means of
MPB [3].

The photonic bandstructure of the crys-
tal containing a linear defect is calculated.



Fig.[6] shows the bandstructure of the ideal
structure projected on the direction I'-K of
the first Brillouin zone together with the
bands of the crystal containing a defect. The
calculation is performed for the TM mode.
Inside the band-gap (yellow area) a defect
mode can be seen.
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Figure 7: Ideal Y-waveguide in 2D photonic
crystal with hexagonal lattice structure . The
lattice constant is a = 0.5um. E, component

of the electromagnetic field is shown.
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Figure 8: Y—wavegulde hke in Fig.[7 but the
radii have a Gaussian distribution with mean
value r = 0.11um.

Electromagnetic waves with frequencies
in the band-gap region cannot propagate in
direction I'-K in the ideal crystal. The fre-
quencies of the band gap region correspond
to wavelengths between 1.4—1.5um. The de-
fect mode allows for the propagation of elec-
tromagnetic waves in the waveguide. The
localization of electromagnetic wave is stud-
ied for a wavelength of A = 1.43um.

Fig.[7] shows the ideal waveguide struc-
ture. All radii are equal and the filling fac-
tor is f = 0.37 for all rods. Propagation of

electromagnetic waves is symmetric, i.e. the
transmission is equal in both branches. T
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Figure 9: Y-waveguide like in Fig.[7] but the
filling factor has a Gaussian distribution with
mean value f = 0.37.

The waveguide in Fig.[§ contains rods
with different radii. The radii have the dis-
tribution given in Fig.[d] The propagation of
EM-waves becomes asymmetric. The waveg-
uide of Fig.[0] has equal radii for all rods but
the filling factor varies. The influence of fluc-
tuations of the filling factor is smaller than
deviations of the radii from the ideal value.
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Figure 10: Transmission coefficient for the ideal
structure (red) and the two branches (blue) for
structure with Gaussian distribution of radii.

The transmission coefficient T' for these
cases has been calculated. The mean value
of total transmittance is not very large
(Tsum = 0.6 for the ideal structure) while the
contrast of permittivity between rods and
medium is small. For all the calculations
Qe = 0 is assumed. For real systems the
imaginary part is different from zero. Cal-
culations of transmission for this case were
also performed. The mean value of T tends



to zero for all wavelengths. The reason of
this results is absorbtion of EM waves by
the metallodielectric rods.
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Figure 11: Transmission coefficient for ideal

structure (red) and the two branches (green)

for structure with Gaussian distribution of
filling factor.

6 Conclusion

The finite element method (FEM) allows
to calculate the effective permittivity of
nanocomposite materials. Due to the
method particles of any shape can be con-
sidered in the calculations.  The effec-
tive permittivity is calculated as an aver-
age over many ensembles with random po-
sitions of the nanoparticles. Based on cal-
culate effective permittivities waveguides in
photonic/plamonic structures can be consid-
ered. The influence of deviations from the
ideal structures like those experimentally ob-
tained is studied numerically.
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