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Abstract: Glass containing nanoparticles
is a promising material for various photonic
applications due to the unique optical prop-
erties mainly resulting from the strong sur-
face plasmon resonance (SPR) of the sil-
ver nanoparticles. The characteristics of the
resonance can be modified by varying size,
shape and concentration of the particles. A
finite element method (FEM) implemented
in the software Comsol Multiphysics is used
to calculate effective permittivities of this
composite material. Two-dimensional struc-
tures of rods characterized by an effective
permittivity have been considered. In con-
trast to the preparation of photonic crys-
tals in silicon the deviations from the ideal
structures are more important for the struc-
tures under consideration here, because such
structures cannot be manufactured with the
same accuracy like the silicon counterparts.
Such deviations are a variation of the radii
of the rods and a variation of the filling fac-
tor. It was investigated how such deviations
influence the transmission of the structures.

Keywords: photonic/plasmonic structures,
silver nanoparticles, effective permittivity,
waveguides.

1 Introduction

In the last years the interest in nanostruc-
tures for optical applications increased dra-
matically. Metallic nanoparticles in a glass
matrix can be used to tailor different opti-
cal properties of photonic/plasmonic struc-
tures. DC electric field-assisted dissolution
can be used as a method to structure glass
templates containing such nanoparticles [1].
As a result of the procedure photonic crys-
tal slabs of hexagonal or square symmetry
are obtained. The structure is formed as
a two-dimensional (2D) lattice of regions of
a composite material containing the metal-
lic nanoparticles. The particles are usually

spherical but can be changed in shape by
mechanical stress or intensive laser pulses.
A basic ingredient for a theoretical analysis
of functional elements, prepared on the ba-
sis of such a material, is the calculation of
the optical properties of the composite ma-
terial. Based on such knowledge, waveguide
structures can be designed.

2 Properties of silver
nanoparticles

According to the experimental results spher-
ical and ellipsoidal silver nanoparticles have
to be considered. Spherical silver nanoparti-
cles have usually a radius of R = 15−20nm.
Ellipsoidal nanoparticles can be described by
a geometrical factor L = a/c. L is the re-
lation between the two non-equal semi-axes
(a 6= b = c). The position of the ellip-
soidal nanoparticles in the glass matrix is
random, with parallel major semi-axes due
to the method of preparation. The opti-
cal properties of such a system are defined
by the ensemble of nanoparticles and are
dependent on the distribution in the ma-
trix. Effective medium theory is used to de-
scribe such a random distributions of metal-
lic nanoparticles. Instead of the ensemble of
particles itself, a homogeneous medium with
a certain effective permittivity εeff , which
leads to the same optical properties is con-
sidered. For ellipsoidal nanoparticles this ef-
fective permittivity depends on the direction
and is a tensor of rank two. If the ellipsoidal
nanoparticles are oriented along the x-axis,
the tensor εeff is diagonal and the diago-
nal elements are: εeff

xx 6= εeff
yy = εeff

zz . The
permittivity of the silver nanoparticles is de-
scribed by Drude’s model.

ε = εb + 1− ωp

ω2 + iγω
(1)

Here ωp, εb, γ represent the bulk plasma fre-
quency, the contribution of interband transi-
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tions and all nonconduction electron contri-
butions to the permittivity, and the damp-
ing of the electron oscillations. [2] The ef-
fective permittivity is a complex function of
frequency. The imaginary part characterizes
absorption of electromagnetic radiation by
silver nanoparticles.

3 Calculation of effective
permittivity

For the calculation of the effective permit-
tivity an finite element method (FEM) has
been used (cf. also [5, 4]). The electric field
is applied to the composite, located in the
plane capacitor. The energy density of the
electric field between plates of capacitor for
a homogeneous medium is given by:

W =
1
2
ε0ε

S

h
U2

0 (2)

The density of electric energy W of the com-
posite in the capacitor is obtained from the
minimization of the functional F with po-
tential ϕ(r) from:

W = F [ϕ(r)] =
1
2
ε0

∫
V

ε(r)[∇ϕ(r)]2d3r

(3)
The local electrostatic potential is calculated
from the following boundary-value problem:

∇ · [ε(r)∇ϕ(r)] = 0 (4)

Figure 1: <εeff
xx and <εeff

yy for different shapes
of nanoparticles. The filling factor is f = 0.3.

If ε for one of the constituents of the com-
posite is complex, the density of energy W is
a complex function too. Real and imaginary
parts of εeff can be found independently.
For a given L (L = 1, 2, ..., 5) a series of 100

randomly constructed ensembles of nanopar-
ticles are investigated. The effective permit-
tivity is found by an average over the set of
ensembles. If L 6= 1 the tensor components
of εeff were calculated.

Figure 2: =εeff
xx and =εeff

yy for different shapes
of nanoparticles. The filling factor is f = 0.3.

From Fig. 1 and Fig. 2 can be seen that
εeff

xx grows with increasing factor L. The
other diagonal element εeff

yy depends on ge-
ometry of particles very weakly because the
absolute value of b is fixed. εeff

xx > εeff
yy

holds for any geometry factors for the real
and image parts. The region of absorption of
electromagnetic waves becomes broader with
increasing L for εeff

xx element. The red line
corresponds to spherical nanoparticles.

4 Plasmonic structures and
statistical analysis

Figure 3: Experimental realization of a periodic
plasmonic structure with 2D hexagonal lattice.
The lattice constant is 0.5µm. The white areas

are the composite regions containing silver
nanoparticles.

Starting from the base material two-
dimensional photonic crystals can be con-



structed. Fig. 3 shows a photonic crystal re-
alized in the glass matrix containing silver
nanoparticles.

Fig. 3 demonstrates also, that the struc-
ture is not perfect. The nanocomposite ar-
eas, named rods further, are not of equal
shape and tend to be square instead of circu-
lar. In a first approximation it was assumed,
that the rods are represented by circles with
different radii. The distribution of the radii
in the sample is approximated by a Gaussian
distribution (cf. Fig. 4).

Figure 4: The distribution of radii in the
structure shown in Fig.3. Experimental results

(blue) are fitted by a Gaussian distribution
(red) The average radius for this sample is

R = 0.11µm

Figure 5: The effective permittivity εeff as a
function of wavelength and filling factor.

Results for spherical nanoparticles. The range
of wavelength is 1.4 < λ < 1.5µm

A waveguide on the basis of such a struc-
ture can be constructed if one row of rods
is removed. This can be realized from the
very beginning using a structured mask in
the preparation of the sample or later by
means of laser radiation. The localization
of the electromagnetic field in a waveguide is

possible for this lattice if the contrast of per-
mittivity between the rods and the glass ma-
trix will be larger than <εrods−εglass > 4.5.
This contrast corresponds to a filling factor
of f = 0.37. The effective permittivity εeff

corresponding to different filling factors is
shown in Fig. 5.

It is supposed that the filling factor for
the nanocomposite has a Gaussian distribu-
tion with average f = 0.37. The data will
be used for the calculation of the electromag-
netic field in the non-ideal waveguides.

5 Photonic crystals and
Y-waveguide

First, an ideal two-dimensional photonic
crystal with hexagonal lattice structure is
considered. In contrast to the experimen-
tal realization the structure is translational
invariant in z-direction. The lattice con-
stant of this structure is a = 0.5µm. The
dielectric medium is glass and the permit-
tivity of the rods is equal to the real part
of εeff , i.e. no absorption is considered. It
is assumed that the rods contain spherical
nanoparticles. The medium inside the rods
is isotropic. On the basis of this structure
Y-waveguides are investigated numerically.
The source of electromagnetic radiation is
located on the left side of waveguide. We
will consider electromagnetic waves with TM
polarization. For this polarization the elec-
tromagnetic wave has a z component of elec-
tric field Ez and x, y components of magnetic
field Hx, Hy.

Figure 6: Projection of bands on waveguide the
direction Γ-K in the first Brillouin zone

together with mode of a linear waveguide (red
line). Calculation is performed by means of

MPB [3].

The photonic bandstructure of the crys-
tal containing a linear defect is calculated.



Fig. 6 shows the bandstructure of the ideal
structure projected on the direction Γ-K of
the first Brillouin zone together with the
bands of the crystal containing a defect. The
calculation is performed for the TM mode.
Inside the band-gap (yellow area) a defect
mode can be seen.

Figure 7: Ideal Y-waveguide in 2D photonic
crystal with hexagonal lattice structure . The
lattice constant is a = 0.5µm. Ez component

of the electromagnetic field is shown.

Figure 8: Y-waveguide like in Fig. 7, but the
radii have a Gaussian distribution with mean

value r = 0.11µm.

Electromagnetic waves with frequencies
in the band-gap region cannot propagate in
direction Γ-K in the ideal crystal. The fre-
quencies of the band gap region correspond
to wavelengths between 1.4−1.5µm. The de-
fect mode allows for the propagation of elec-
tromagnetic waves in the waveguide. The
localization of electromagnetic wave is stud-
ied for a wavelength of λ = 1.43µm.

Fig. 7 shows the ideal waveguide struc-
ture. All radii are equal and the filling fac-
tor is f = 0.37 for all rods. Propagation of

electromagnetic waves is symmetric, i.e. the
transmission is equal in both branches. T

Figure 9: Y-waveguide like in Fig. 7, but the
filling factor has a Gaussian distribution with

mean value f = 0.37.

The waveguide in Fig. 8 contains rods
with different radii. The radii have the dis-
tribution given in Fig. 4. The propagation of
EM-waves becomes asymmetric. The waveg-
uide of Fig. 9 has equal radii for all rods but
the filling factor varies. The influence of fluc-
tuations of the filling factor is smaller than
deviations of the radii from the ideal value.

Figure 10: Transmission coefficient for the ideal
structure (red) and the two branches (blue) for
structure with Gaussian distribution of radii.

The transmission coefficient T for these
cases has been calculated. The mean value
of total transmittance is not very large
(Tsum = 0.6 for the ideal structure) while the
contrast of permittivity between rods and
medium is small. For all the calculations
=ε = 0 is assumed. For real systems the
imaginary part is different from zero. Cal-
culations of transmission for this case were
also performed. The mean value of T tends



to zero for all wavelengths. The reason of
this results is absorbtion of EM waves by
the metallodielectric rods.

Figure 11: Transmission coefficient for ideal
structure (red) and the two branches (green)
for structure with Gaussian distribution of

filling factor.

6 Conclusion

The finite element method (FEM) allows
to calculate the effective permittivity of
nanocomposite materials. Due to the
method particles of any shape can be con-
sidered in the calculations. The effec-
tive permittivity is calculated as an aver-
age over many ensembles with random po-
sitions of the nanoparticles. Based on cal-
culate effective permittivities waveguides in
photonic/plamonic structures can be consid-
ered. The influence of deviations from the
ideal structures like those experimentally ob-
tained is studied numerically.

References

[1] A.Abdolvand, A.Podlipensky,
S.Matthias, F.Syrowatka, U.Goesele,
and H.Graener, Metallodielectric two-
dimensional photonic structures made
by electric-field microstructuring of
nanocomposite glasses, Advanced Mate-
rials 17 (2005), 2983–2987.

[2] H.Graener, A.Abdolvand, S.Wackerow,
O.Kiriyenko, and W.Hergert, Opti-
cal properties of photonic/plasmonic
structures in nanocomposite glass,
Phys.stat.sol.(a) 204 (2007), 3838–3847.

[3] Steven G. Johnson and J. D. Joannopou-
los, Block-iterative frequency-domain
methods for maxwell’s equations in a
planewave basis, Opt. Express 8 (2001),
no. 3, 173–190.

[4] V. Myroshnychenko and C.Brosseau,
Finite-element modeling method for the
prediction of the complex effective per-
mittivity of two-phase random statisti-
cally isotropic heterostructures, J. Appl.
Phys. 97 (2005), 044101.

[5] V.Myroshnychenko and C. Brosseau,
Finite-element method for calculation of
the effective permittivity of random in-
homogeneous media, Phys. Rev. E 71
(2005), 016701.


	Introduction
	Properties of silver nanoparticles
	Calculation of effective permittivity
	Plasmonic structures and statistical analysis
	Photonic crystals and Y-waveguide
	Conclusion

