On Boundary Conditions for CSEM Finite Element Modeling,

Joonsang Park and Tore Ingvald Bjørnarå* Norwegian Geotechnical Institute

Harald Westerdahl and Eduardo Gonzalez StatoilHydro Research Center

Contents

- Controlled-Source ElectroMagnetics (CSEM), marine
- 2.5D modeling and EM equation
- Challenges in using FEM
- Simple absorbing boundary domain
- Other absorbing boundary conditions/domains, remarks
- Conclusion and Future work (for COMSOL 2009)
- Acknowledgements

Marine CSEM: high conductive, low frequency of 0.1 ~ 10 Hz

marine CSEM: measured data types

- Amplitude vs. offset (AVO) curves, "log-scale"
- Phase vs. offset (PVO) curves

2.5D modeling and EM equation

- 2D geological structure in many cases, i.e. ε=ε(x,z), μ=μ(x,z), and σ=σ(x,z).
- 3D unit-dipole source in use.
- 2.5D modeling (2D geological structure; 3D point source) is the most practical!

$$\frac{\partial}{\partial x} \left[\frac{i\omega\varepsilon}{k_{y}^{2} - \omega^{2}\mu\varepsilon} \frac{\partial E_{y}}{\partial x} \right] + \frac{\partial}{\partial z} \left[\frac{i\omega\varepsilon}{k_{y}^{2} - \omega^{2}\mu\varepsilon} \frac{\partial E_{y}}{\partial z} \right] - i\omega\varepsilon E_{y} - \frac{\partial}{\partial x} \left[\frac{ik_{y}}{k_{y}^{2} - \omega^{2}\mu\varepsilon} \frac{\partial H_{y}}{\partial z} \right] + \frac{\partial}{\partial z} \left[\frac{ik_{y}}{k_{y}^{2} - \omega^{2}\mu\varepsilon} \frac{\partial H_{y}}{\partial x} \right] = \frac{\partial}{\partial x} \left[\frac{ik_{y}}{k_{y}^{2} - \omega^{2}\mu\varepsilon} J_{sx} \right]$$
$$\frac{\partial}{\partial x} \left[\frac{i\omega\mu}{k_{y}^{2} - \omega^{2}\mu\varepsilon} \frac{\partial H_{y}}{\partial x} \right] + \frac{\partial}{\partial z} \left[\frac{i\omega\mu}{k_{y}^{2} - \omega^{2}\mu\varepsilon} \frac{\partial H_{y}}{\partial z} \right] - i\omega\mu_{y}H_{y} + \frac{\partial}{\partial x} \left[\frac{ik_{y}}{k_{y}^{2} - \omega^{2}\mu\varepsilon} \frac{\partial E_{y}}{\partial z} \right] - \frac{\partial}{\partial z} \left[\frac{ik_{y}}{k_{y}^{2} - \omega^{2}\mu\varepsilon} \frac{\partial E_{y}}{\partial x} \right] = -\frac{\partial}{\partial z} \left[\frac{i\omega\mu}{k_{y}^{2} - \omega^{2}\mu\varepsilon} J_{sx} \right]$$

Challenges in using FEM

- Source singularity: general in FE application; but near-field is not of the major interest.
- Absorbing boundary conditions/domains: general in FE application; even more crucial in CSEM.
- Discretization relating to skin-depth, not wavelength: at least 4 quadratic elements per skin-depth.
- AVO curves are in logarithmic scale of range of 10 order.

Simple absorbing boundary domain, proposed

- 100 x (skin-depth): left and right boundary domains are important!!!
- 20 elements/layers, exponentially increasing

Numerical example: simplest model, to see only the artificial reflection

Numerical example: results, less than 1% error!

Other absorbing boundary conditions/domains, remarks

- We have also experienced some other advanced boundary conditions or domains such as perfectly matched layer (PML) [ref. 1,6], boundary integral equation method (BIEM) [ref. 8], consistent transmitting boundary condition (CTBC) [ref. 5], impedance boundary condition, etc.
- Each of these domains and conditions has its own advantages and disadvantages.
- PML technique seems a most attractive. However, when applying it to the CSEM FE modeling, it is not trivial to determine the optimal PML parameters for the discrete numerical modeling.
- Currently, we are extending this study and evaluate the simple boundary domain in comparison with the other advanced boundary domains or conditions.

Conclusion and Future work (for COMSOL 2009)

- Simple absorbing boundary domain proposed works quite well, and it is quite robust.
- Nevertheless, meshing in COMSOL might be difficult due to big aspect ratio.
- We need to improve the performance and will present in COMSOL conference in 2009!

Acknowledgements

 We thank to StatoilHydro and Norwegian Geotechnical Institute for financial support for this study and permission to present

