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Abstract: Various types of equation system 
formulations for modelling two-phase flow in 
porous media using the finite element method 
have been investigated. The system of equations 
consists of mass balances, partial differential 
equations (PDE) that describe the accumulation, 
transport and injection/production of the phases 
in the model. In addition, several auxiliary 
equations (eg. hydraulic properties) apply to the 
system, coupling the different phases in the 
system together. This set of equations, PDEs and 
auxiliary equations, allows for equation 
manipulation such that the main differences 
between the formulations are the dependent 
variables that are solved for. Here we have tested 
five different formulations for 2D simulations 
and one for 1D; the Buckley-Leverett equation. 
The various formulations are compared with 
regards to numerical performances like 
robustness (numerical stability) and solving time. 
The purpose of the investigation is to identify a 
preferred formulation that will be best suited for 
more complicated modelling, by for instance 
taking into account poroelasticity, energy 
balance, chemical reactions, dissolution of the 
phases, etc. The tests performed strongly suggest 
that the fractional flow formulation is the fastest 
and most robust formulation. 
 
Keywords: Two-phase flow, porous media, 
finite element method 
 
1. Introduction 
 

Multi-phase flow, like two-phase flow, is 
often strongly convection-dominated (as opposed 
to diffusive flow). Pure convective transport is 
discontinuous, convection-dominated flow exert 
some diffusion, but still has a very sharp front of 
the intruding phase that needs to be numerically 
resolved and therefore can be very difficult, 
sometimes even impossible, to solve with the 
finite element method. A possible remedy to this 
is to use stabilization techniques, for instance 
artificial diffusion, but there are big uncertainties 
and controversy about the accuracy obtained by 
using these methods. 

As a consequence of this, using the best 
suitable and most robust method for solving the 
problem from a wide variety of choices can be 
crucial. There are many alternative numerical 
methods to be used when solving two-phase flow 
problem, but the finite element method has some 
very appealing advantages, one of them being 
the flexible meshing and discretization and hence 
the ability to deal with complicated geometric 
structures. 

Using the finite element method, in two-
phase flow the system of equations consists of 
mass balances; partial differential equations 
(PDE) that describe the accumulation, transport 
and injection/production of the phases in the 
model. In addition, several auxiliary equations 
describing for instance hydraulic properties, 
apply to the system, coupling the different 
phases and enabling equation manipulation thus 
the main differences between the formulations 
are the dependent variables that are solved for. 
Using the finite element method, there are many 
ways to solve two-phase flow problems, in the 
next section six various formulations will be 
presented. 
 
2. Equations 
 

See appendix A for description of the 
symbols and variables. 

The background equations for all versions of 
two-phase flow equations presented here are 
derived from the fluid phase mass balance 
equations, of each phase: 
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where the Darcy velocity can be defined by: 
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here the indices i and j refer to the axes 
directions; x- and y-axes direction, respectively. 

In addition to the mass balance, several 
auxiliary relations apply to complete the two-
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phase flow formulation. Among these is the 
continuity of fluid saturation: 
 

Sw + Sn = 1 ,        (3) 
 
and the capillary pressure defined as: 
 
 pc = pn – pw .        (4) 
 

Capillary pressure-saturation relationships 
and relative permeability can be expressed by for 
instance Van Genuchten or Brooks-Corey. Here 
the latter is used, see eq. B.1-5. 
 
2.2. Formulations of two-phase flow 
 

In this section various formulations for 2D 
two-phase flow will be reviewed. They will be 
applied on a simple geometry so they can be 
compared with a solution obtained using the 
Buckley-Leverett equation for two-phase flow in 
1D. Also, the methods are ranked with regards to 
the numerical performance; degrees of freedom 
solved per second, but also robustness. Even 
though the various formulations describe the 
same phenomenon by different equations only, 
the models are solved numerically and are 
therefore subjected to varying degree of 
numerical stability. 

Note that we are here concerned with 
isothermic, immiscible displacement of two, 
incompressible fluids in an incompressible solid 
matrix. These requirements induce certain 
implications on the equations: The temperature is 
constant in the system, the fluid properties (eg. 
density) of the two phases are considered 
constant and not depending on pressure and the 
solid matrix is not poroelastic; meaning that the 
available pore space (porosity) is constant. Also, 
for simplicity, gravity is ignored. 
 

The main types of equation system 
formulations presented here are termed: 
 
Buck - Buckley-Leverett equation 
Part - Partial pressure formulation 
Flod - Flooding formulation 
Phas - Phase pressure-saturation formulation 
Frac - Fractional flow formulation 
Weig - Weighted pressure formulation 
 

The names above for the various 
formulations are in some cases typical names 

often referred to in the literature and others 
somewhat arbitrary chosen to clearly distinguish 
the various formulations. The main differences 
are the dependent PDE variables that are solved 
for. 

Of the six types presented above, Part and 
Flod are so-called pressure based formulations 
and the others are saturation based formulations. 
The following indices n and w indicate the 
phase; non-wetting and wetting, respectively, p 
represents the pressure and S the saturation. 

Part solve for pn and pw, Flod solve for pc (= 
pn - pw) and ps (= pn + pw), Phas solve for (pn,Sw) 
or (pw,Sn), Frac solve for (ps,Sw) or (ps,Sn) and 
Weig is similar to Frac, except that the total 
pressure ps stems from a different definition. 
 
2.3. Part; partial pressure formulation, [1, 4, 
6, 12, 13, 14] 
 

In the two-pressure approach the governing 
equations are written in terms of the pressures in 
each of the two phases through a straightforward 
substitution of Darcy's equation into the mass 
balance equations for each phase; pn and pw for 
non-wetting and wetting phase, respectively. 

The wetting saturation is calculated via 
inversion of the Van Genuchten capillary 
pressure function; Sw=f-1(pc). See appendix B for 
further details. 

Two-phase flow in porous media follows 
separate equations for the wetting and non-
wetting phase, substituting eq. 3 into eq. 1 (for 
the wetting phase), using the definition of the 
capillary pressure, eq. 4, and fluid capacity: 
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results in the two PDEs: 
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2.4. Flod; flooding formulation, [8] 
 

Flooding formulation is a pressure based 
formulation. The formulation is traditionally 
used in flooding problems, hence the name. The 
depedent variables solved for are the global 



pressure ps and the capillary pressure pc. Also, 
using that: 
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and adding and subtracting the two equations of 
eq. 1 for each phase and doing some equation 
manipulation results in the two PDEs to be 
solved for: 
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where Λc and Λs are defined as: 
 

( )Kwnsyysxxs λλ +=Λ=Λ=Λ 2/1    (11) 

( )Kwncyycxxc λλ −=Λ=Λ=Λ 2/1    (12) 
 
2.5. Phas; phase pressure-saturation 
formulation, [1, 5] 
 

Since the saturation can be expressed as a 
function of the capillary pressure it is possible to 
reformulate the governing equations in terms of 
saturation of one of the phases and the phase 
pressure of the other phase. Hence, there are two 
main versions of this formulation; the (pn,Sw)- 
and the (pw,Sn)-systems that are directly derived 
from eq. 1, the former is: 
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Note here that a typical abbreviation is used: 
 

wcc Spp ∂∂='         (15) 
 
2.6. Frac; fractional flow formulation, [1, 2, 3, 
5, 6, 7, 9, 10, 11, 15, 16] 
 

The fractional flow approach originated in 
the petroleum engineering literature, and 
employs the saturation of one of the phases and a 
global/total pressure as the dependent variables. 
The fractional flow approach treats the multi-
phase flow problem as a total fluid flow of a 
single mixed fluid, and then describes the 

individual phases as fractions of the total flow. 
This approach leads to two equations; the global 
pressure equation; and the saturation equation. 

The equations can be found by 1: adding the 
mass balances and do some numerical 
manipulation; the pressure equation. 2:  subtract 
the mass balances and do some numerical 
manipulation; saturation equation: 
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Using expressions for the total velocity eq. C.3 
and phase velocities eq. C.1-2 
 
2.7. Weig; weighted pressure formulation, [3, 
15] 
 

The weighted pressure formulation is an 
alternative to the fractional flow where one of 
the dependent variable is the total pressure. 
Then, applying the same algebraic manipulations 
as in deriving the fractional flow formulation 
results in a new definition of the total velocity, 
eq. C.4. The mass balances are the same as for 
the fractional flow formulation; eq. 15 and eq. 
16. 
 
2.8. Buck; Buckley-Leverett equation, [17] 
 

The Buckley–Leverett is used to model two-
phase flow in porous media in 1D: 
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where u is the front velocity [m/s] of the fluids at 
saturation Sw. Considering the saturation 
equation in the fractional flow formulation, eq. 
17, eq. 18 can be derived, given mass 
conservation, ignoring capillary pressure and 
gravity. When including capillary pressure, the 
Buckley-Leverett equation can be defined as: 
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This equation is used when comparing the 
various 2D two-phase flow formulations. 
 
3. Model definition 
 
The geometry used to solve the Buckley-Leverett 
equation is a 1D geometry, see figure 1 for 
geometry and initial and boundary conditions. 

 
Figure 1. 1D geometry, initial condition and boundary 

conditions used for solving Buckley-Leverett 
equation. Length of geometry is 100 m. Here n is the 

outward pointing normal vector. 
 
Similarly, the geometry and initial and boundary 
conditions used to solve the 2D equations are 
given in figure 2. 

 
Figure 2. The 2D geometry, initial and boundary 

conditions used for solving the various two-phase flow 
formulations. The geometry is a square with 100 m 

width. Here n is the outward pointing normal vector. 
Where applicable, outlet boundary condition 1. is 
used, or else outlet boundary condition 2. is used 

 
A small residual of the wetting phase is 

present initially; a fraction of 0.05. This is to 
insure that both phases in all formulations will be 
present and properly defined. 

Because of the nature of the various 
formulations, some have a convective and a 
diffusive term in the PDEs, for example the 
saturation based formulations. For the pressure 
based formulations, which are strictly diffusive 
in nature, the geometry is ‘stretched’ in the 
length direction of the inflow (geometry is a 
rectangle 100mx200m) and a pressure condition 

equal to the initial pressure condition is applied 
on the outlet boundary. Where needed, the initial 
pressure conditions are all derived from the 
initial total pressure condition and using 
capillary pressure-saturation functions. For more 
model properties, see appendix Model properties. 
 
4. Simulations and results 
 

All formulations where solved and compared 
for different model setups, given in table 1. To 
compare the performance of the formulations, a 
value corresponding to number of degrees of 
freedom (dofs) solved per second was chosen. 
This is not a perfect criterion, since solution time 
is not linear with the workload (dofs). However, 
it gives, at least, a rough indication of the 
performance. 

The results of the simulations for the various 
formulations and different setups are given in 
table 2. 
 
Table 1: Model setups used to compare the various 
formulations. The parameter in setup 2-4 that is 
different than in setup 1 is indicated in bold. 

Setup Parameter 1 2 3 4 
Intrinsic 

permeability, 
[m2], K 

1e-10 1e-11 1e-10 1e-10 

Entry 
pressure, 
[Pa], pd 

1e4 1e4 1e3 1e4 

Influx wetting 
phase, 

[m3/s], qw 
1e-2 1e-2 1e-2 1e-1 

 
Table 2: Results of the simulations for the various 
formulations and setups. Multiple values for each 
setup are given where multiple runs with different 
meshes where performed. The highest score for each 
run is indicated in bold. 

Setup, dofs/sec Equation 
formulation 1 2 3 4 

Buck 6 4,4,5 5,3,3 6,4,5 
Frac 96 70,55,57 56,61,68 33,56,55 
Part 69,88 42,16,12 8,18,22 8,8,12 
Flod 59,49 42,19,13 13,19,28 10,10,13 
Phas 90 62,52,54 50,60,62 31,49,49 
Weig 94 491),50,52 50,531),591) 32,47,48 

1) Needed a denser mesh than the other formulations 
 
Figure 3 a-d show the effective wetting 
saturation along the x-axis for the Buckley-
Leverett equation (thick black line) and the 

Initial condition: 
Sw(t = 0) = 0.05 

Influx: 
-n·(fwqt - D∇Sw) = qw/A 

Convective outflow:
-n·(D∇Sw)=0

Initial condition: 
Sw = 0.05 

ptot = 1e6 Pa 

1. Convective 
outflow, or 
2. Pressure 

condition

Insulating/symmetry 

Insulating/symmetry 

Influx: 
-n·uw = qw/A 



various formulations for model setups 1-4, 
respectively. The color-code for the other 
formulations are given in table 3. 
 
 

 

 

 

 
Figure 3. The plots show the effective wetting 
saturation as function of offset along the x-axis for the 
Buckley-Leverett equation (thick black line) and the 
other formulations. See table 3 for color-code 
explanation. (a) setup 1. (b) setup 2. (c) setup 3. (d) 
setup 4. 
 
Table 3: Corresponding color-code and formulation in 
the result plots, figure 3 a-d. 

color Formulation color Formulation 
Red Frac Yellow Phas 

Brown Part Blue Weig 
Green Flod Black Buck 

 
5. Discussion and conclusion 
 

When it comes to numerical speed (solution 
time), the differences between the various 
formulations are noticeable, even for simple 
cases like setup 1 (table 2). When the model 

becomes more physically complicated to solve 
(due to low permeability, high injection rate, low 
entry pressure, etc.) the robustness of the 
formulation becomes important and the solution 
times differ even more. Also, when the values 
become more critical, some of the formulations 
need a denser mesh to get a solution at all. One 
method seems to be faster, when looking at the 
results in table 2, and more robust than the others 
(requires little or no tuning of mesh, etc.); the 
fractional flow formulation. 

The results in figure 3 show consistent 
results for all formulations, except for the 
pressure formulations. The curves for Buck, 
Frac, Phas and Weig all coincide into one line, 
visible as the thick black line in figure 3. The 
pressure formulations (green and brown curve) 
show some deviation, particularly Part (brown 
curve). This is believed partly to be due to the 
different boundary conditions applied on the 
outlet boundary for the various formulations; the 
saturation based formulations have convective 
outflows on the outlet while the pressure based 
formulations have applied pressure conditions 
(corresponding to initial pressure conditions) 
since they do not have the convective outflow 
condition. The result of this pressure condition 
can be seen as the steep dips in the wetting 
saturation curves close to the outlet, in figure 3, 
as the pressure condition forces the saturation to 
initial value (here 0.05). However, it would be 
reasonable to expect Part to behave similarly to 
Flod, this seems not to be the case and need 
more investigation to fully understand. A 
conclusion to this is that the deviation in Part is 
too big to be explained by the boundary 
conditions alone, hence there is something not 
correct in the partial pressure based formulation. 
In addition to this, an explanation to the poor 
performances of the pressure based formulations 
in general is that if one of the saturations is very 
small then the pressure in that phase will be 
poorly defined and could be numerically difficult 
to solve. 

For the other formulations, particularly Frac 
and Weig, even if one phase is to disappear (Sw 
or Sn is zero, or small) there is still a non-zero 
smooth variable for the global pressure p, a 
general advantage and intuitively a reason to 
choose one of these formulations. 

Concerning robustness, for setup 2 and 3, 
Weig did not solve with the same settings as the 
others. It needed a denser mesh before it would 

a 

b 

c 

d 



solve. It’s a general requirement that the mesh 
needs to properly resolve the model compared to 
the front velocity of the injected phase, but Weig 
seemed particularly sensitive to this. The limit to 
how sensitive is not investigated. 

The results for the Buckley-Leverett is not 
directly comparable to the others; first it’s 1D 
and second it only solves one equation; for the 
wetting saturation. Because it solves much less 
dofs for a comparable model (same problem 
definition and same mesh resolution), it’s much 
faster and therefore is a good choice for 1D 
problems. 

Finally, a literature study and comparison of 
documented equation formulations for modelling 
two-phase flow have been performed. The 
objective has not been to go into the details of 
the numerical benefits and drawback of the 
various formulations, but find a formulation that 
is best suited for further development by 
including effects like thermodynamics, 
poroelasticity, chemistry, etc. The criteria of 
selection are numerical speed and robustness. 
For 2D problems, based on the analysis 
performed here, the favorite formulation is the 
fractional flow formulation. 
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Appendix A. Nomenclature 
 
pα partial/phase pressure, [Pa] 
t time, [s] 

α represents the fluid phases (wetting – w, 
non-wetting – n) 

Sα saturation of phase α, [-] 
Sαr residual saturation of phase α, [-] 
ρα fluid density, [kg/m3] 
K intrinsic permeability tensor, [m2] 
φ dimensionless porosity, [-] 

γα 
fluid specific weight or gradient due to 
gravitation, = ρα⋅g, [Pa/m] 

λα phase mobility, [1/Pa⋅s], ααα μλ rk=  

λ total mobility, [1/Pa⋅s], nw λλλ +=  
z positive upward vertical direction, [-] 
g gravity vector, [m/s2] 
qα volumetric flux source term, [m3/s] 
fα fractional flow, [-], λλαα =f  
krα relative permeability, [-] 
μα dynamic viscosity, [Pa⋅s] 
pc capillary pressure, [Pa], wnc ppp −=  
 
Appendix B. Van Genuchten relations 
 

The advantage of using van Genuchten vs. 
Brooks-Corey functions is that the derivatives 
are continuous, improving numerical stability. 
 
Capillary pressure vs. saturation function: 
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The effective wetting saturation, Sew, is given by: 
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where Sew∈[0,1]. 
 
The derivative is analytically derived: 
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Saturation vs. capillary pressure function: 
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The derivative is analytically derived: 
( )( )( ) ( )

( )( )1
1

+
+−=

−

n
cc

n
c

mn
c

c

ew

pp
npmp

dp
dS

α
αα  (B.5) 

 
Note: Here α is model parameter, related to the 
entry pressure, pd, eg. α = 1/pd 
 
Appendix C. Velocity vectors 
 

The saturation based formulations uses these 
velocity vector expressions, depending on the 
phase described: 
 

( )guu )( nwcwnww pKff ρρλ −+∇+=   (C.1) 

( )guu )( nwcnwnn pKff ρρλ ++∇−=   (C.2) 
 

In addition, formulations Frac and Phas use 
this expression for the total velocity: 
 

( )gKu )( nnwwp ρλρλλ +−∇−=    (C.3) 
 

The Weig formulation uses a different 
definition of the total pressure and hence a 
different expression for the total velocity: 
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           (C.4) 
 
Appendix D. Model parameters 
 
Table D.1. Model parameters. 

Description, variable Unit Value 
Porosity, φ [-] 0.2 
Intrinsic permeability, tensor, K [m2] 1e-10 
Dynamic viscosity, wetting, μw [kg/ms] 1e-3 
Dynamic viscosity, non-wetting, μn [kg/ms] 2e-2 
In-flux, wetting phase, qw [m3/s] 1e-2 
In-flux, non-wetting phase, qn [m3/s] 0 
Total volumetric flux, qt = qw + qn [m3/s] 1e-2 
Total pressure, ps [Pa] 1e6 
Residual wetting sat., Swr [-] 0 
Residual non-wetting sat., Snr [-] 0 
Model parameter, m [-] 2/3 
Model parameter, n [-] 1/(1-m) 
Model parameter, α [1/Pa] 1e-4 
Model parameter, ε [-] 1/2 
Model parameter, γ [-] 1/3 
Entry pressure, pd [Pa] 1e4 
Initial saturation, Sw0 [-] 0.05 

 


