Using COMSOL Multiphysics for Modeling of Musculoskeletal Biomechanics

Robert L. Spilker, Sc.D. Professor

Department of Biomedical Engineering
Rensselaer Polytechnic Institute
spilker@rpi.edu
www.bme.rpi.edu

Overview

- Why is COMSOL particularly powerful for modeling physiology?
- Modeling soft tissues like cartilage
- Optimization to determine soft tissue properties
- Modeling of moving loads in the TMJ
- Robust 3D models from imaging data
- Model of primary lymphatic system
- Final comments

Computer Simulation of Physiology

Biomechanics of Soft Physiological Tissues

- Soft physiological tissues throughout physiology (cartilage, tendon, ligament, meniscus, TMJ ... cornea, organ walls)
- Biomechanical behavior is nonlinear and anisotropic (large loads, fibrous materials)
- Biomechanical behavior is time dependent (e.g., like a viscoelastic material)
- Tissues have coupled multiphysics (solid deformation fluid flow, biochemical reactions, bioelectric sign
- Multi-scale in space (gait, joint loads, tissue response)
- Multi-scale in time (tissue growth vs running)

Example 1: Engineering a Scaffold for Tissue Growth (S. Maher, Hosp for Special Surg)

- Cell seeded, soft porous scaffold for cartilage replacement
- Subjected to cyclic compressive loads
- Cells stimulated by biophysical factors (stress, strain, transport)
- Model material as biphasic two intrinsically incompressible phases:
 - solid (collagen, proteoglygan)
 - interstitial fluid (inviscid)
- Matches experimental measures
 - creep, stress-relaxation
 - transport
 - load sharing between phases
- Biomechanics community is primary user
- In linear form, equivalent to Biot poroelasticit

Biphasic Implementation in COMSOL

- Earth Science Module for fluid phase (steady state Darcy pressure analysis)
- Structural Mechanics Module for solid phase (static solid mechanics)
- Add coupling terms
- Define GUI-based coefficients to produce desired PDEs
- Attention to stress definitions
- Attention to traction BCs

Biphasic Implementation in COMSOL

• Biphasic fluid phase / COMSOL Darcy component:

(Biphasic)
$$(\mathbf{v}_{i}^{s} - \kappa p_{,i})_{,i} = 0$$

(COMSOL) $\left(-\delta_{K} \frac{\kappa}{\eta} (p + \rho_{f} g D)_{,i}\right)_{,i} = \delta_{Q} Q_{S}$

• Couple through Q_s , and define (GUI) coefficients

$$Q_{S} = -v_{i,i}^{s} = -\left(\frac{\partial u_{i}^{s}}{\partial t}\right)_{,i} \text{ and } \delta_{Q} = 1$$

$$\kappa = permeability(m^{4} / Ns)$$

$$\delta_{K} = \eta = \phi^{f}$$

$$\rho_{f} = 0$$

Biphasic Implementation in COMSOL

Biphasic solid phase / COMSOL solid component:

(Biphasic)
$$\left(C_{ijkl}u_{(k,l)}^s - \delta_{ij}p_{,i}\right)_{,j} = 0$$

(COMSOL) $-\left(C_{ijkl}u_{(k,l)}\right)_{,j} = F_i$

- Couple through F_i : $F_i = -p_{,i}$
- Define solid phase elastic constants through GUI
- Use of Solid Mechanics Module eases transition to orthotropic and nonlinear descriptions

Stresses and Tractions in COMSOL

Solid phase stress:

$$\sigma_{ij}^s = C_{ijkl}^s u_{(k,l)}^s - \phi^s p \delta_{ij} = \sigma_{ij}^{s^E} - \phi^s p \delta_{ij}$$

- Fluid phase stress: $\sigma_{ij}^f = -\phi^f p \delta_{ij}$
- Total stress: $\sigma_{ij}^{Tot} = \sigma_{ij}^s + \sigma_{ij}^f = \sigma_{ij}^{s^E} \delta_{ij} p$

 Applying traction in COMSOL Structural Mech Module gives

$$t_i^{COMSOL} = \sigma_{ij}^{s^E} n_j = \overline{t_i}^{Tot} + \delta_{ij} p n_j$$

Unconfined Compression of Cylindrical Plug

- Compress cylindrical disc (cells/scaffold) between two perfectly lubricated, rigid, impermeable platens
- Ramp displacement (25s), followed by hold (stress relaxation) on top platen
- Behavior uniform in z, deformation and fluid flow in r
- Strong gradients in pressure, fluid flow, etc at the outer radius

Unconfined Compression -- Pressure vs time

Example 2: Using Optimization to Determine Biphasic Material Parameters

- Tissue testing needed for constitutive properties:
- Modulus, E^S, Poisson ratio, v^S , permeability, κ
- Analytic solution of tissue test not feasible
- Use FE to simulate the test
- Solve for the measured experimental quantities
- Use optimization to control search for properties
- Find properties that give "best fit" to -- e.g.
 - normal stress at platen vs. time
 - radial displacement at outer radius vs. time

Coupling Biphasic COMSOL and Optimization Lab

Controlling Routine

"opt" structure

Objective function pointer

Bounds

Initial guess

Call to Opt Lab routine

Experimental results / data **Routine that defines** the objective function **FE Solution of Experiment** fem structure exported from **COMSOL** model

Example -- Unconfined Compression

- Use ramp (100s) / hold unconfined compression stress relaxation experiment
- Determine E^S (0.225e6 Pa), v^S (0.125), κ (7.6e-15)
- Match experimentally measured radial expansion and normal stress on upper surface vs time
- Objective function = Least squares difference between experiment and FE solution at select times
- Used nonlinear optimization routine
- Initial guess E^{S} (1.0e6 Pa), v^{S} (0.3), κ (1.0e-15)

Results -- Unconfined Compression Stress

• 236 iterations, properties < 0.01% error

Example 3: Bone Remodeling Around Implant

- Implant in mouse tibia
- Mechanical stimulation
- Bone remodeling

3D Model from microCT

- Import microCT of tibia
- Process dicom to get robust STL file (Mimics
 -- Materialize Inc)
- Insert implant (CAD model)
- Insert surrounding material
- Hypotheses -mathematically model
 interface material and
 property changes due to
 cell activity and tissue
 growth

Example 3: Modeling Moving Contact in the TMJ (J. Nickel and L. Iwasaki, Dental School, UMKC)

- Temporomandibu lar joint (TMJ)
- Hydrated soft tissue
- Few successful interventions / restorations
- Sliding Contact between mandible and jaw
- Plowing test with rigid indenter is in-vitro approximation

Biphasic Model Using ALE Moving Mesh

- Biphasic model of tissue
- Approximate contact with no-flow and solid phase force
- Move the indenter / BC with ALE in COMSOL
- Mesh below indenter moves with PT1 and PT2

Biphasic Model of TMJ Plowing -- Total σ_{y}

Fluid Structure Model of Primary Lymphatic System

Galie and Spilker, J. Biomech Engng (in review)

Primary Lymph Valve -- Fluid Velocity Contour

Concluding Remarks

- Modeling human physiology for biomedical engineering is:
 - -Multiphysics
 - -Multi-scale in space and time
 - -3D
 - –Nonlinear and time dependent
 - -Engineering interacts with biology
- COMSOL gives tools for coupling, with user interface for commercial user

