

Department of Industrial and Mechanical Engineering University of Catania, Italy

ERG – ISAB Energy Services Engineering Maintenance, Priolo Gargallo (SR), Italy

Reacting Flows in Industrial Duct-burners of a Heat Recovery Steam Generator

Petrone G., Cammarata G., Caggia S., Anastasi M.

Motivation

Technological inconveniences concerning maintenance of the post-firing section of a Heat Recovery Steam Generator (HRSG) of an Integrated Gasification Combined Cycle (IGCC) power plant

Layout of an IGCC power plant

Gasification Island

A synthesis gas is produced by oxidising coal or waste products coming from petroleum distillation processes

Layout of an IGCC power plant

Syngas powers gas turbines that provide hot exhaust gases (Turbine Exhaust Gas, TEG) to a Heat Recovery Steam Generator (HRSG), producing working fluid for steam turbines

Δ

The Heat Recovery Steam Generator

Very often the HRSG is equipped by a post-firing section, in order to balance losses in efficiency of the gas turbines (hotter season)

Post-combustion section

5

After-burners

The post-firing section consists in arrays of duct-burners, mounted on horizontally arranged pipes providing fuel by transversal nozzles

What is the problem ?

Duct-burners operative conditions are affected by fuel composition: gas impurities (Ni-carbonyl) becomes unstable at temperature above about 700 K, depositing metallic Ni on the burner contour.

It has been observed as high deposit thickness enables overheating, unusual thermo-mechanical stress and then cracking of the components.

The burners must be periodically cleaned to restore safe operating condition, imposing expensive plant stops.

This is a problem !

A multi-physical problem ...

Duct-burner array characterization

One half section of the burner is considered both in 2D and 3D simulations

1.

COMSOL N CONFERENCE

HANNOVER

Governing equations

Fluid dynamics: Newtonian fluid - Incompressible, turbulent and steady flow

$$(U \cdot \nabla)U = \frac{-\nabla p}{\rho} + \nabla \cdot \left[(v + v_T) \nabla U \right] + \frac{F}{\rho}$$

 $\nabla \cdot U = 0$

$$\left(U\cdot\nabla\right)k = \tau_{ij}\frac{\partial u_i}{\partial x_j} - \varepsilon + \nabla \cdot \left[\left(\nu + \frac{\nu_T}{\sigma_k}\right)\nabla k\right]$$

$$(U \cdot \nabla) \varepsilon = c_{\varepsilon_1} \varepsilon / k \cdot \tau_{ij} \frac{\partial u_i}{\partial x_j} - c_{\varepsilon_2} \varepsilon^2 / k + \nabla \cdot \left[\left(v + \frac{v_T}{\sigma_{\varepsilon}} \right) \nabla \varepsilon \right]$$

Momentum conservation

Continuity

Turbulent kinetic energy

Dissipated turbulent energy

Governing equations

Reacting flows and energy conservation

 $CO + H_{2} + O_{2} \square H_{2}O + CO_{2}$ $\nabla \cdot (-D_{H_{2}}\nabla H_{2}) = R - U \cdot \nabla H_{2}$ $\nabla \cdot (-D_{CO}\nabla CO) = R - U \cdot \nabla CO$ $\nabla \cdot (-D_{O_{2}}\nabla O_{2}) = R - U \cdot \nabla O_{2}$ $\nabla \cdot (-D_{H_{2}O}\nabla H_{2}O) = R - U \cdot \nabla H_{2}O$ $\nabla \cdot (-D_{CO_{2}}\nabla CO_{2}) = R - U \cdot \nabla CO_{2}$ $R = \pm k_{1} \times O_{2} \times H_{2} \times CO \mp k_{2} \times CO_{2} \times H_{2}O$ $\nabla \cdot (-\lambda \nabla T) = (R \times H) - \rho C_{P}U \cdot \nabla T$

 $H = H_{CO_2} + H_{H_2O} - (H_{O_2} + H_{H_2} + H_{CO})$

Chemical reaction for syngas oxidation (simplified)

Transport and diffusion of chemical species $(H_2, CO, O_2, CO_2, H_2O)$

Reaction rate

Energy conservation

Net Enthalpy of reaction

Boundary Conditions Fluid dynamics

Boundary Conditions Mass balance of chemical species

Boundary Conditions Thermal analysis

Computational grid

UMF direct method for solving linear systems

20

"On design" operative conditions 89 MW_{th} (0.8 MW_{th} /m) Velocity field

"On design" operative conditions 89 MW_{th} (0.8 MW_{th} /m) Streamlines of flow

Recirculation chamber: fuel is used as coolant for the burner manifold

Anticlockwise vortex formation and slight pressure drop caused by the vein contraction

"On design" operative conditions $89 \text{ MW}_{th} (0.8 \text{ MW}_{th}/\text{m})$ Concentration field of reacting species

"On design" operative conditions 89 MW_{th} (0.8 MW_{th} /m) Concentration field of product (H₂O)

"Anchorage" assured by the deflector wing with respect to the product formation (mixing and combustion region)

Molar fraction of H₂O

24

"On design" operative conditions $89 \text{ MW}_{\text{th}}$ (0.8 $\text{MW}_{\text{th}}/\text{m}$) Thermal field

"On design" operative conditions 89 MW_{th} (0.8 MW_{th} /m) 3D results - fluid dynamics

"On design" operative conditions 89 MW_{th} (0.8 MW_{th}/m) 3D results - thermo-chemical

"Turn down" operative conditions (150%) 133 MW_{th} (1.2 MW_{th} /m) Streamlines of flow

Due to the higher thermal load, flow rates of incoming fluids are increased: fluiddynamics is modified

A new little clockwise vortex is clearly observable close to the end of the deflector wing

"On design" Vs "Turn down" Comparison of fluid dynamical fields

The highlighted new fluid structure allows TEG to come closer to the fuel injection hole improving mixing between oxidising and combustive

"Turn down" operative conditions 133 MW_{th} (1.2 MW_{th} /m) Concentration field of product (H₂O)

"Turn down" operative conditions $133 \text{ MW}_{\text{th}} (1.2 \text{ MW}_{\text{th}}/\text{m})$ Thermal field

... the flame get closer to the burner body determining high overheating !

400

Min: 291

"Turn down" operative conditions $133 \text{ MW}_{\text{th}} (1.2 \text{ MW}_{\text{th}}/\text{m})$ Thermal field

"Turn down" operative conditions $133 \text{ MW}_{th} (1.2 \text{ MW}_{th}/\text{m})$ Temperature along symmetry axis

"Turn down" operative conditions $133 \text{ MW}_{\text{th}} (1.2 \text{ MW}_{\text{th}}/\text{m})$ Temperature along the front panel

Nickel-carbonyl deposition becomes "possible" due to the high temperature of the burner manifold

Molar fraction of H_2O in longitudinal sections of the burner

H₂O production

TEG leakage to the recirculation chamber lead to a brisk combustion close to the burner body

Conclusions

A multi-physical numerical analysis concerning fluid-dynamical, chemical and thermal behaviour of an industrial duct-burner has been performed:

✓ The present study underlines the needed of simulating simultaneously several interconnected aspects of physics for technological systems, in order to completely describe their operative conditions.

✓ Simulations well highlight as modification in fluid-dynamics, related to increasing in mass flow rate of reactants, seriously compromise flame stability. Flame triggering during "turn-down" conditions results too close to after-burners manifold, so that metal deposition and high thermal stresses could be produced.

✓ The onset of a dangerous brisk combustion, related to TEG leakages through out the assembled array of duct-burners, has been also detected by 3D simulations.

39

THANK YOU!

This research work has been developed at:

Department of Industrial and Mechanical Engineering University of Catania, Italy

AUTHORS CONTACT:

D.I.I.M. – University of Catania
Viale A. Doria, 6 – 95125 CATANIA, ITALY
+39 095 738 2452
+39 095 738 2496
<u>gcamma@diim.unict.it</u>
gpetrone@diim.unict.it
http://www.ing.unict.it