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Abstract 

Strain gauges have been extensively used for 

detecting strain in various applications. Double-

ended tuning fork (DETF) strain gages present 

better performance characteristics than standard 

foil gauges, including higher sensitivity, smaller 

size and higher resolution. This study focuses on 

the design of a microelectromechanical (MEMS) 

double-ended tuning fork (DETF) and the 

evaluation of its performance through the 

comparison of analytical and computational model 

outcomes. The analytical model predicts the 

frequency and sensitivity of the gauge using the 

beam equation while the finite element (FEM) 

computational model is set up using COMSOL. 

The analytical and the computational models are in 

fairly good agreement. The designed MEMS strain 

gauge has a strain sensitivity of 49.8 Hz/με 

according to the FEM model and 57.7 Hz/με 

according to the analytical model. The obtained 

sensitivity is comparable higher than state-of-the-

art MEMS gauges using silicon substrate. Our 

design has the additional advantage of using a 2-

mask SOI process resulting in a simpler fabrication 

process. 
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Introduction 

 
Strain gauges are sensors typically used for 

measuring strain applied on –man-made or biological 
structures. Applications of strain gauges range from 
structural health monitoring of buildings and bridges 
[1], flexible substrates in mechatronics and [8], to 
accurate strain measurements in human bone 
mechanics [9]. In addition, strain measurements can be 
indirectly used to quantify different phenomena of the 
system under investigation. Those can be measurement 
of acceleration, fatigue estimation of engineering 
structures, torque measurements [4] and mass 
estimation.  

Resistive strain gauges exploit the change in 
resistance with the application of strain and are usually 
fabricated using metals and semiconductors. The gauge 
factor is typically defined as the ratio of the non-
dimensional output of the gauge to the strain input. 

Thus for a resistive gauge the gauge factor (GF) is 
defined in - (1):  

(1) 

Generally, metallic gauges present a low GF 
between 2 and 5 while p-type (110) single crystalline 
silicon (sc-Si) gauges can have a GF as high as 200 
[10]. The high GF of silicon gauges, either single 
crystalline (sc-Si), polycrystalline (Poly-Si) or 
amorphous is due to the piezoresistive effect along with 
the ability to modify the gauge resistivity with doping 
[8]. 

There are applications that requires a high 
sensitivity gauge. Depending on the specific setting, 
there may be additional requirements such as high 
temperature operation, high temperature or eutectic 
bonding and high fracture toughness. MEMS-based 
strain sensors have been demonstrated to be more 
sensitive than metal or semiconductor gauges [3], be 
able to withstand high temperatures during operation or 
bonding [5] while presenting fracture strength of at 
least 1 GPa.  

A DETF resonant strain gauge is presented in [3], 
used for torque measurements with a sensitivity of 39 
Hz/με, including the loss when the sensor is bonded to 
a substrate. The final sensitivity of the gauge was 
reported to be 17.5 Hz/με. Additionally, [2] presented 
a silicon-to-steel induction bonding method verifying 
the resilience of the gauge to high temperatures while 
increasing the strain transfer from the substrate to the 
gauge in comparison to epoxy bonding.  

This paper seeks to investigate the performance of 
a new DETF resonant strain gauge by comparing the 
analytical model regarding the operation of the sensor 
with an FEM model constructed in COMSOL 5.2. The 
analytical modeling treats the resonating tines as linear 
beams vibrating at their resonant frequency, with the 
mass of the beam and the actuator modeled as point 
masses. On the other hand, the FEM model includes the 
entire device, which allows the effect of the base of the 
tuning fork and the effect of the anchor to be studied. 
The device shows high sensitivity at high strains with 
the analytical and computational models presenting 
increased difference for strain values above 500 με.  

 

Theory 
 

The Double-Ended Tuning Fork 
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The double-ended tuning fork geometry consists of 
several beams, which are resonating to their natural 
frequency with external excitation. The beams are 
connected on each end with the base, which is of the 
same material and usually much stiffer than the beams. 
The whole structure is suspended by the anchors, 
which connect the double-ended tuning fork to the 
substrate. Since it is assumed that the base is much 
stiffer than the beams, the analysis is focused on one 
beam viewed as a clamped-clamped one. The 
differential equation that describes the motion of the 
beam is [7]: 

(2) 

where E is the Young’s modulus, I the moment of 
inertia, F the axial force applied on the beam, ρ the 
density of the beam, P the actuation force applied on 
the beam and A the cross-section of the beam. The 
deflection of the beam is given by w (t, x). The 
response of the beam at resonance consists of an 
infinite number of resonating modes. Each mode is 
independent of one another, consisting of the modal 
coordinate term, qi (t) and the modal shape φi (x): 

(3) 

The selected modal shape for this analysis will be 
the fundamental modal shape of the tuning fork. The 
solution of the beam equation was presented in [7]. 
Using this approach, the expressions for the linear 
spring constant and equivalent mass are shown below 
[6]: 

(4) 

(5) 

where b is the width, h the thickness and L the length 
of the beam, xp the position of the actuator mass, Mact 
the mass of the actuator, φ1 the first oscillation mode 
and εint any internal strain residing in the device layer. 
The natural frequency of the selected mode and thus 
of the beam is given by: 

(6) 

By substituting equations (4) and (5) into (6), an 

expression for the resonant frequency as a function of 

strain ε can be derived: 

(7) 

The length of the beam (L) is 395 μm, the width (b) 
is 5 μm and the thickness (h) is 10 μm. The device 
layer will be monocrystalline silicon, thus, the density 

(ρ) will be 2330 kg/m3 and the Young’s modulus (E) 
will be 150 GPa. The DETF uses a comb-drive 
actuator for excitation and sensing with a mass (Mact) 
of 1.77x10-10 kg. The comb’s drive interdigitated 
finger gap is 3 μm while the thickness of the fingers is 
2 μm. The finger overlap is 15 μm. The frequency 
sensitivity of the beam can be derived from (7), taking 
into consideration that the calculation involves both 
beams. The derived expression for frequency 
sensitivity of the sensor is given in (8). 

(8) 

For simplicity, the internal strain term εint and the 
input strain ε term are assumed zero. The sensitivity of 
the beams to strain greatly depends on their physical 
dimensions. Thus, the fabrication process needs to 
accurately reproduce the device geometry. A 0.1 μm 
increase in the width of the beam results in a 1% 
decrease in sensitivity. Photolithography tests have 
shown that the beam and comb drive dimensions can 
be kept within 0.1 μm. The process selected for the 
fabrication of the device is the standard silicon-on-
insulator (SOI) process, which guaranties that the 
thickness of the device layer remains unaffected 
during fabrication and constant at 10 μm. The DETF 
strain gauge is shown in figure 2. 
 

Numerical Model  

 
Geometric modeling 

 

A parametric FEM model of the DETF mechanism 

has been created using COMSOL 5.2. Creating the 

parametric geometry directly in COMSOL allows any 

changes to the geometry to be readily simulated 

(without the need to import the geometry from 

different software) and enables the ability to perform 

parametric studies. The 3D geometry consists off the 
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Figure 1. The double-ended tuning fork model. 
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DETF itself as well as the electrostatic comb drive. 

The DETF and comb drive dimensions are identical 

with those used in the analytical formulation. The 

device is made from a mono-crystalline silicon layer 

measuring 10 μm in thickness. In addition, a thin 1 μm 

silicon dioxide layer is located under the anchoring 

points of the device proving contact with the silicon 

substrate. The substrate is not modeled in this study. 

The model of the device is shown in figure 1 

 

Comsol Modeling 

 
The model uses the solid mechanics node and an 

eigenfrequency analysis in order to calculate the mode 
shapes of the device. A parametric study was 
performed to calculate the frequency of the strain 
gauge at the unstretched position and the frequency 
shift created by the applied force. The first step of the 
study was to perform a static analysis according to the 
applied load and the second is the modal analysis to 

estimate the frequency. The force is applied in 0.001 
N steps with a maximum of 0.016 N, corresponding to 
a 0 to 1000 με range. The top surface of the device was 
meshed using 2D mapped elements and this mesh was 
swept through the entire volume of the device, 
resulting in a hexahedral structured mesh. The element 
size was determined by performing a sensitivity 
analysis of the mesh. The mesh size was 
parametrically defined and a modal analysis was 
performed for each different element size. The final 
element size was selected based on the difference 
between consecutive solutions and on the available 
computational resources.  The mesh is shown in figure 
3. The maximum element size used to mesh the entire 
volume was 1.6 μm, yielding 176,616 elements and 
5,120,217 degrees of freedom.  
 

The boundary conditions were applied to the 
bottom of the anchors and to the bottom of the 
stationary combs, hence a fixed constrain condition. 
As mentioned before, the SOI process involves a thin 
silicon dioxide layer between the silicon device layer 
and bottom silicon layer. Thus, at the bottom of the 
anchors a 1 μm SiO2 layer was added in order to 
capture any effects related to the deformation of the 
anchors. In order to analyze the sensitivity of the 
sensor, all the degrees of freedom were removed from 
one of the anchors and a boundary force was applied 
to the free anchor. The force was applied to the 
longitudinal direction of the device effectively being a 
tensile force.  

For simulating the electrical behavior of the device 
under an AC and DC input voltage, the 
electromechanics node was used and a stationary and 
frequency domain analysis was performed with 
harmonic perturbation applied regarding the AC input. 
The mesh consists of 199,625 tetrahedral elements for 
a total number of 1,350,582 degrees of freedom. The 
minimum element size was kept at 10.3 μm due to 
memory constrains.  

The material of the device was modeled as linear 
elastic material. The fixed constraint condition was 
applied at the bottom of the anchors and the bottom of 
the stationary combs, allowing the structure to vibrate. 
A bias DC voltage was applied at the resonating 
structure at the 80V level. The AC voltage was applied 
at the exciting electrode of the comb drive at 0.5V with 
the harmonic perturbation node. Since the device was 
intended to operate at atmospheric pressure, the 
dominant damping mechanism is created from the 
interaction of the structure with the surrounding air. 
For a comb drive system, all surfaces in contact with 
air will contribute to the damping. For this analysis the 
thin-film damping node was used and the boundary 
conditions were applied at the bottom of the device 
and at the comb fingers. The rarefied total 
accommodation model was used for this study. 

 

Simulation Results 

 
 Frequency analysis 

Figure 2. The double-ended tuning fork model through 

an scanning electron microscope. 

Figure 3. Structured mesh of the model geometry. 
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In order to find the resonance frequency of the 

fundamental mode of the beams the modes shapes of 
the device were modeled and the results are shown in 
figure 4. The first two modes oscillate in a similar 
fashion however the difference is that the first one 
oscillates in a symmetric mode and the second in an 
antisymmetric one. The antisymmetric mode is 
preferred due to the fact that the forces on the clamped 
sides of the beams do not produce a net force on the 
base.  

 
The frequency analysis is conducted in order to 

obtain the maximum amplitude at the resonant 
frequency at the range of 83.400 to 84.800 kHz with a 
60Hz step. The resonant frequency was found to be 
84.060 kHz with 1.1 μm maximum displacement of the 
beams. That frequency is higher than the f2 frequency 
calculated by the eigenvalue solver. It should be noted 
that the modal analysis utilized a denser mesh than the 
frequency analysis. The previous mesh sensitivity 
analysis showed that the frequency is mesh depended 
with the frequency increasing linearly with an 
increasing element size. The frequency response is 
shown in figure 5. 

 
Strain gauge sensitivity 

 
A comparison of the analytical formulation and the 

simulation results are shown in figure 6. The 
unstretched resonant frequency of the gauge predicted 
by the beam theory was found to be 87.220 kHz and 
the resonant frequency of the first mode estimated by 
COMSOL was 83.014 kHz. In this setting, there is no 
tensile force applied on the beam. Thus, any effects 
from stretching the beams cannot be held responsible 
for this 5% difference. 

By analyzing the FEM results, it 

seems that when the beams are under oscillation, the 
base is not rigid enough thus acting as a spring. The 
same model was recalculated by setting the bases as 
rigid domains and the unstretched resonant frequency 
was the same as the analytical one to less than 1%. 
Therefore, a correction can be applied to the analytical 
model by taking into account the stiffness of the base.  

The sensitivity of the gauge was 57.7 Hz/με, as 
predicted by (8) taking into account the input strain and 
49.8 Hz/με estimated by the FEM model using flexible 
bases. The two sensitivities are within 10% from 0 to 
500 με however at higher strains the difference is 
greater. This difference is likely due the deformation of 
the anchor blocks which reduce the sensitivity of the 
gauge. It should be noted that the calculation of the 
sensitivity was performed assuming 100% strain 
transfer from the measurement point to the substrate 
and from the substrate to the resonating tines. This is 
the ideal case, and as shown by [3], the sensitivity of 
the gauge can be reduced as much as 65% due to these 
inefficiencies. 
The strain gauge has been fabricated at the Birck 
Nanotechnology Center. The fabrication process uses 2 
iron oxide masks for the photolithography process. 
Figure 2 shows a scanning electron microscope image 
of the fabricated device. The figure shows the comb 
drives, the beams and other elements of the tuning fork. 
 
 

Conclusions 
 

This study shows a high sensitivity DETF strain 
gauge capable of resolving strains as high as 1000 με. 
By manipulating the dimensions of the gauge it was 
possible to achieve the high sensitivity without 
structurally compromising the rest of device. Although 
the sensitivity of the gauge is higher than other gauges 
presented in the literature, the strain losses from the 
substrate and the anchor structure of the DETF have to 

Figure 4. Mode shapes of the double-ended tuning fork 

structure 

Figure 5. Frequency response of the double-ended 

tuning fork structure. 
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be further analyzed. This will provide a more accurate 
estimation of the gauge output under experimental 
testing. Additionally, as the device is under 
fabrication, experimental results will further explain 
the strain loss mechanism, yielding a better 
understanding of the gauge performance.  
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Figure 6. Frequency versus strain showing the 

difference between the analytical and computational 

model. 

Excerpt from the Proceedings of the 2017 COMSOL Conference in Boston




