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Introduction: Raman Spectroscopy

> Inelastic scattering of incident mon

with molecular vibrations and excit

» Chemical identification and structu

ochromatic light through interactions of photons

ations. (similar to IR: absorption of light)

ral finger printing of molecules.
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Rayleigh scattering Stokes shift Anti-Stokes shift
(elastic) Raman Scattering (inelastic) *Nature Protocols 11, 664-687 (2016) doi:10.1038/nprot.2016.036

> Constraints: Raman scattering is weak phenomenon, the number of photons which are Raman

scattered is quite small.




Introduction: Surface-Enhanced Raman Spectroscopy (SERS)

> Raman effect: based on interaction between electron cloud of sample and external electric

field produced by incident monochromatic light.

> Interaction of incident monochromatic light with noble metals (Ag, Au, Pt) and adsorbed

probe molecule give rise to enhanced Raman intensity signal”
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> EM or near-field enhancement dependent” Single Molecule SERS

Plasmonic Design L
of Biomolecules

of Hot Spots

- Rice, eggs, stars, etc.
- Nanolithography

- Colloidal self-assembly
- Nanostructure architecture

lons, glucose and lipids
Intracellular SERS

- Bacteria, plant, yeast
- HelLa and fibroblasts
- In vivo detection

» [Intense near electric fields

Prediction /
Theoretical Methods

- Electromagnetic coupling
- Enhancement mechanisms
- Near-field nano-optics

- Single molecule imaging
- Quantification

»  Dielectric environment

B SERS Chemical Imaging
- Intracellular distribution
\— - pH sensing
Hot spot / - Transport
. ¢ ... among others
In vivo In vitro

N — number of molecules probed/illuminated by the laser spot, | —_

RS, SERS : Raman spectra and Surface-Enhanced Raman spectra

:Chemical Physics Letters, 26 , 163-166 (1974), 2Journal of Electroanal. Chem. and Interface Electrochem., 84, 1-20 (1977),
J. Am. Chem Soc., 99, 5215-5217 (1977).




COMSOL near-electric field simulations: How and Why?

> Wave Optics physics in wavelength domain study

> Maxwell’s Electromagnetic wave equations are solved for scattered fie]

ds

V x

1 2 jo
P-_r(v X Esca) — Kp (Sr_w_eo) Esca =0

where E__, — scattered electric field |
Ky - wavenumber in free space I\
W, - relative permeability of medium |
€ — permittivity of medium

> Enhancement is due to both incident and scattered fields.

> EM or field enhancement |E/E,| is dependent:

E:M‘\']ﬁial wave: Eqexp(-jkx)Z

> Inter-particle distance & probe molecule distance dependence: nanogap

o laser \ f SERS on Increase in shell thickness/ laser\ f SERS off
> laser excitation wavelength nanogap
9,

> NP shape and size ﬁ




Nanogap control via LBL (Layer-by-Layer) method using charged polyelectrolytes

One cycle
Ag NP each of
20 min stirring Centrifuge to Redispersed in Centrifuge Final polycation
under dark remove excess Milli-Q water washing step :
olvmer and polyanion
poy = One Bilayer
Polyelectrolyte
Polymer shell thickness Increase with number of layers
Size distributions of the polymer shell thickness (100 measurements) for the different samples:
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Hotspots in the nanoparticle clusters: Quantification for SERS
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| Raman Microscope §
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After Drying

» Simplification of the models and EF calculations by assuming dimers representing nanocluster systems.




SERS hot spots: gap/distance dependence theoretical analysis

Study with core-shell nanoparticles:

> Using polymer as the spacer layer for increasing the gap/distance of interface between nanoparticles

nanogap 1nm nanogap 2.8nm nanogap 4.8nm

E/E,
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Ag nanoparticle dimer series




Experimental vs Theoretical (COMSOL) EF comparison

» Validation of COMSOL EF calculations for Au and Ag silver nano-dimers with experimental SERS signal.
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Normalized Theoretical SERS Enhancement Factor (EF)|E/E,|*

SERS: Plasmonic nanoparticle size dependence
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Gold nanoparticles: EF vs particle size dia.

COMSOL EF simulations: crucial information A

Essential to check the overlapping of plasmon resonance with

Raman laser excitation wavelength
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Maximum attainable EF: Absorption vs scattering by plasmonic nanoparticles

» Maximum EF>very high enhanced Raman signal—2>single molecule detection(parts per trillion levels)
> The plasmon resonance should be slightly red-shifted from Raman laser wavelength to maximize signal”

» Mie calculations in COMSOL by implementing Mie equations to plot absorption and scattering efficiencies:

Waps = ﬁﬁNp QuossdV,  Wscq = @A Ssca -NAA

c ewfd.Qp c (nyx ewfd.relPoavy +n,, *x ewfd.relPoavy, + n, x ewfd.relPoav,)
b = ————— =
abs EZO sca EZO
2 * Z0_const 2 x Z0_const
Mie calculations from COMSOL: Gold nanoparticle of dia. 20 nm
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*McFarland, A.D. et. Al., J Phys Chem B (2005), 109(22), 11279



Conclusion:
» FEM simulations can provide crucial insights: from synthesis, design and application perspective
> Study the effect of medium and design of nanoparticle plasmonic system for SERS applications

» COMSOL Multiphysics, a vital mechanistic tool : plasmonic nanoparticles viability for hotspot applications

' .2 L.Slqi

- ,,-..
o

Sustainable Energy,
Ul' Air & Water Technology

University of Antwerp



