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Abstract: This paper describes the first ever 

procedure for doing topology optimization when the 

physics in question is thermoviscous acoustics. For 

now, only tubes with plane wave propagation are 

considered, but the topology optimization of the tube 

cross-section is possible for objective functions that 

include both viscous and thermal effects, in addition to 

the standard momentum and compressional effects.  A 

condensed description of all steps from thermoviscous 

theory to the optimization procedure, onto the 

implementation in COMSOL Multiphysics, and 

finally to simulated and practical examples is given. 
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Introduction 

 
Topology optimization was first formally introduced 

by Bendsøe and Kikuchi in 1988 [1], with its roots in 

structural mechanics. The optimization process 

should ideally result in a design variable distribution 

where the corresponding material is either some 

reference value or void. In recent years, strategies for 

other physics have emerged, e.g. for acoustics [2,3]. 

Since acoustic topology optimization is a rather new 

research area, there has so far only been focus on 

standard acoustics, where the processes are adiabatic 

and reversible. However, special cases, such as 

thermoviscous acoustics, have yet to be investigated 

in the framework of topology optimization. 

 

Thermoviscous acoustics has been a research area for 

the past century [4-9]. Compared to standard 

isentropic acoustics, where only momentum and 

compressional effects are considered, the effects of 

thermal conductivity and viscosity need to be 

included for accurate modelling in narrow regions, 

such as in hearing aid geometries, with tubes having 

radii in the millimeter or sub-millimeter scale. In the 

special case of a one-dimensional pressure field in a 

tube, a particular method exists for arbitrary cross-

sections; this method is utilized here, since the 

associated equation system lends itself well to 

topology optimization. 

Thermoviscous Acoustics 

 
Two effects, combined denoted “thermoviscous”, are 

responsible for significant losses in narrow regions: 

 

• Near a boundary with high thermal 

conductivity, an isothermal boundary 

condition is assumed. There will therefore 

be a thermal gradient towards the bulk, and 

an associated loss. 

• Due to viscosity in the air, molecules will 

tend to stick to the boundary with a no-slip 

boundary condition, and this will slow down 

adjacent molecules. This results in a velocity 

gradient and added loss. 

  

The thermoviscous behavior is illustrated in Figure 1. 

 

 
Figure 1. With isothermal/no slip conditions on the walls of 

a tube, the temperature variation is zero near the wall, and 

the velocity vectors show a different distribution near the 

wall compared to in the bulk. 

Generally, thermoviscous acoustics is described via 

the so-called Full Linearized Navier-Stokes (FLNS) 

equation set [7] with an ideal gas assumption and for 

steady state behavior can be written as 

 iωρ�v�� � 	43 μ 
 η�� ∙ �� ∙ v��� 
 	μ� � �� � v��� 
 �p � 0 

 iωρ�C�T � κΔT � iωp � 0 

 � ∙ v�� � iω TT� 
 iω pp� � 0 
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where p is the pressure, T is the temperature 

variation, T� and p� are ambient values, ρ� is the 

density of air, v�� is the velocity vector, μ is the 

dynamic viscosity, η is the bulk viscosity, κ is the 

thermal conductivity, and C� is the specific heat at 

constant pressure. It is assumed that there are no 

sources. Appropriate boundary conditions must also 

be applied. The approach of solving this equation set 

is an option in COMSOL Multiphysics using the 

Thermoviscous Acoustics interface in the Acoustics 

module. The method requires a mesh, which is 

sufficiently fine near the boundary to capture the 

boundary layer effects. 

  

Low Reduced Frequency Model 
 

The general complexity of the FLNS method, along 

with the need for a refined mesh near boundaries, 

makes the computational cost very high for a 

topology optimization routine. Alternative methods 

exist that simplify the equation set for certain 

geometries, such as tubes and slits. One such method 

is the Low Reduced Frequency (LRF) model [6], in 

which it is assumed that the pressure is constant over 

the cross-section, and that the boundary layers are 

small compared to the acoustic wavelength. The 

model’s equation system can be written in a 

convenient way [7,8] suited for the purpose of 

topology optimization. It involves solving two 

uncoupled 2D Helmholtz wave equations with unity 

source terms and complex wavenumbers: 

 Ψ� 
 k�!"Δ#$Ψ� � 1 
and Ψ& 
 k&!"Δ#$Ψ& � 1 

 

where Δ#$ is the Laplacian in the cross-sectional 

directions, and with the following boundary 

conditions [8] 

 Ψ� � 0 for no-slip BC 

 

 �'Ψ� � 0 for slip BC 

and Ψ& � 0 for isothermal BC 

 

 �'Ψ& � 0 for adiabatic BC 

 

Here, Ψ� is a complex scalar field that describes the 

viscous effects, and Ψ& is a complex scalar field that 

describes the thermal effects, with wavenumbers 

 k� � (�ωρ�/μ 

and 

k& � *�ωρ�C�/κ 

 

These wavenumbers contain both real and imaginary 

parts to account for the dissipative fields. 

 

Transmission Line Parameters 

 

A complex and frequency-dependent density and a 

ditto bulk modulus can be calculated from the Ψ-

fields as [9] 

 ρ � ρ�1Ω#$ , Ψ�dΩ#$./0
 

and K � K�γ � �γ � 1� 1Ω#$ , Ψ&dΩ#$./0
 

 
where ρ� and K� are the isentropic values, γ is the 

ratio of specific heats, and Ω#$ is the cross-sectional 

area. The density and bulk modulus can be used in a 

standard acoustics Helmholtz wave equation, so that 

thermoviscous effects are implicitly, but accurately, 

included. However, in the current work we will focus 

on the complex density and bulk modulus on their 

own, as these variables can be directly associated 

with transmission line parameters. These parameters 

completely describe the acoustic 1D-behavior in 

tubes and slits. The acoustic series impedance Z′ and 

the acoustic shunt admittance Y′ are linked to the 

complex density and bulk modulus as [7,9] 

 Z6 ≡ R6 
 iωL′ � iωρ/Ω#$ 
and Y6 ≡ G6 
 iωC′ � iωΩ#$/K 
 

where R6 is the viscous series resistance, L6 is the 

series inertance, G6 is the inverse of the thermal shunt 

resistance,  and C6 is the shunt compliance. All 

primed parameters are per length unit, and	R6,L6,G6 
and C6 are all real valued.  

 

Topology Optimization 
 

Topology optimization deals with solving a problem 

of the form [10] 

 min= : Φ@ξ,ΨCD																												 																						s. t.	:		0 < ξ�x, y� ≤ 1					∀	�x, y� ∈ 	Ω#$  

:			 N ξdΩ#$./0 ≤ βΩ#$ 
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where Φ is the objective function, P is the design 

variable that determines the material distribution, the ΨC-field is the state variable, and β is maximum area 

fraction, to put a limit on how much of the area can 

be assigned ‘solid’ properties. Additional constraints 

can be attached to the optimization problem. It will 

assumed here for clarity that the entire cross-section 

is available for the optimization, but in general the 

proposed method works also for Ω#$ �Ω#$,Q�R 	⋃ 	Ω#$,'Q'Q�R, where the former area is to 

have a material distribution via the design variable, 

but the latter is fixed to be air with appropriate 

boundary conditions. 

 

Thermovisco-acoustic topology optimization has not 

yet received any attention in the literature. There is 

no agreed upon material interpolation scheme for the 

FLNS model, and when interfaces between air and 

solid appear in during the optimization, the mesh 

must be able to capture the high gradient behavior, 

which adds to the complexity. However, with the 

LRF model it is possible to establish a relatively 

simple interpolation scheme for distributing the 

design variables in an optimized manner. 

 

Design Variable Interpolation 

 

The PDEs are written in a slightly more general form 

 aCΨC � cCΔ#$ΨC � fC 

 

where the subscript “ϕ” means “either h or v”. The 

diffusion coefficient cC is equal to �kC!", aC is the 

absorption coefficient, and fC is the source term. The 

letters a, c and f are chosen because of the same 

notation being used in the COMSOL Multiphysics 

PDE interface in the Mathematics module. 

 

From the description of the thermoviscous method it 

can be seen that for typical isothermal, no-slip 

conditions, the Ψ-fields will be 0 on the boundary 

and 1 in the bulk. Hence, a heuristic approach has 

been taken to establish an interpolation scheme by 

considering that for an “air-like” material with no 

losses, the source term should be unity, and for a 

“solid-like” material, the thermal and viscous fields 

should approach zero, which can be obtained by a 

zero source term, leading to 

 fC � fC�ξ� � Y1	for	ξ � 0		�Air�0	for	ξ � 1		�Solid� 
 

where P is the design variable to be varied to find the 

optimized topology. In order to have the field near a 

boundary go sharply to zero in the “solid” domain, 

the absorption term in the solid is increased by order 

of magnitudes compared to the unity term for the 

“air” domain 

 aC � aC�ξ� � Y 1	for	ξ � 0	�Air�aC,_`a	for	ξ � 1	�Solid� 
 

These extreme values are shown in Figure 2 to be 

able to create similar fields as with homogenous 

Dirichlet boundary conditions. 

 

 
Figure 2. In a) the left half of the 2D geometry is modelled 

using the design variables for air (white) and solid (black), 

whereas the right half uses homogenous Dirichlet boundary 

conditions with an area removed from the simulation (grey). 

In b) symmetry in the field indicates valid interpolation 

extremes. 

The intermediate values are found via the 

penalization schemes known as Solid Isotropic 

Material with Penalization (SIMP) for the source 

term, and Rational Approximation of Material 

Properties (RAMP) for the absorption coefficient, 

respectively, with both interpolation schemes 

described in [10]. We assume in this subsection that 

both fields follow the same interpolation, and so the 

subscript ϕ is removed. The SIMP interpolation 

scheme can then be written as 

 f�ξ� � f_b' 
 ξ�c�f_`a � f_b'� 
 

for the souce term, and the RAMP interpolation for 

the absorption term as 

 a�ξ� � a_b' 
 ξ1 
 pd�1 � ξ� �a_`a � a_b'� 
 

where pe and pd are penalty factors. Examples of 

these interpolation schemes are illustrated in Figure 3 

and Figure 4, respectively. 
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Figure 3. An example of the SIMP-interpolated source 

term f�ξ� as a function of the design variable ξ. 
 

 
Figure 4. An example of the RAMP-interpolated 

absorption term a�ξ� as a function of the design variable ξ. 
Weak form 

 

The harmonic PDEs can be written in weak form 

using the second Green’s theorem, so that 

 

N aCΨfCΨCdΩ#$./0 
 cCN �ΨfC ∙ �ΨCdΩ#$./0 � 

N ΨfCfCdΩ#$./0 
 cCN ΨfC@�ΨCD ∙ n��	d ∂Ω#$h./0  

 

where ΨfC is a test function. Again, remember that 

two equations are actually written above for ϕ � h 

and ϕ � v, respectively.  

 

Finite Element Discretization 

 

For simplicity, we consider only the viscous field in 

the following sections. With the field being 

approximated via real-valued shape functions i as 

  Ψ� � ijk� 
and  Ψf� � ijkf� 
 

with kf� being arbitrary for kinematically admissible 

fields, a matrix system can be set up as 

 l�k� � m� 

 

where 

l� � N a�iijdΩ#$./0 
 c�N ni�ni�jdΩ#$./0  

 

and 

 

m� � N if�dΩ#$./0 � c�N in'k�	d ∂Ω#$h./0  

 

The integrals are evaluated numerically on an 

element basis, and the boundary integral is zero for 

slip conditions. 

 

A more general formulation can be made which 

includes both the viscous field Ψ� and the thermal 

field Ψ&, but in this subsection Ψ& is dictated by the 

geometry found for the optimization with only the 

viscous field considered. 

 

Objective Function 

 

Since no literature exists on the topic of topology 

optimization of thermoviscous acoustics, there is no 

typical objective function. As an example of an 

objective function, we seek in this subsection to 

maximize the viscous losses per unit length, while 

not changing the momentum characteristics too 

much, since resonances will otherwise shift in 

frequency. The latter is enforced via an area 

constraint. Only the momentum and viscous effects 

are considered in the optimization, and so the 

analysis is simplified here to reflect this, but it can be 

written more generally to reflect objective functions 

and constraints that depend on both momentum, 

viscous, compressional and thermal effects.  

 

We write the viscous field objective function as 

 max= : Φ �ℜ�R′� � ℜpR′@k��q�, Ω#$�q�Dr 

 

where the field is implicitly a function of the design 

variable. It is noted, that the area of interest is only 

that which has air-like properties, which is different 

from the entire cross-sectional area; hence the area 

itself becomes a function of the design variable. The 

distribution is not binary during the optimization 

process, so extra measures must be taken in assessing 

the area. Inserting and simplifying gives the 

following objective function 
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max= : Φ � ℜ�R6� � ωρ�ℜs i, k�dΩ#$./0�q�
t 

with 

s. t. :
uvw
vx 	y < q ≤ z	
N qdΩ#$./0 /Ω#$ ≤ β

l�k� � m{
	

 

Sensitivity Analysis 

 

The sensitivities of the objective function to changes 

in the design variables are needed for the gradient-

based optimization. This is done via the so-called 

adjoint sensitivity analysis. The procedure is 

described in the literature [10], and so will not be 

repeated here. One thing to note, however, is that the 

derivatives of the source term with respect to changes 

in the design variable need to be retained in the 

analysis, since this source term is a function of the 

design variable. This is not always the case, and so 

this derivative may not be included in all available 

literature. 

 

Optimization Algorithm 

 

The Method of Moving Asymptotes (MMA) [11] was 

used for solving the constrained optimization 

problem. 

 

Regularization 

 

A PDE density filter [12] has been applied to prevent 

mesh dependencies.  

 

Implementation 
 

The entire simulation was carried out using the 

Mathematics module, since all equations, including 

the density filter, were implemented via the PDE 

interface and the topology optimization was defined 

via Optimization and Sensitivity interface; both 

interfaces are in the Mathematics module. 

 

There are several implications in the proposed 

optimization scheme compared to more traditional 

topology optimization. For example, cross-sectional 

integration has to be done over only the air domain, 

and so during the optimization, the structural domain 

must continuously be excluded. However, during the 

optimization process, there are regions that fall in 

between the two extremes, and so a logical 

expression is included in the integration calculation 

that excludes regions above a certain design variable 

threshold. 

 

In order to be able capture the boundary layer effects 

not only on prescribed boundaries, but also at 

interfaces between air (ξ=0) and solid (ξ=1), a very 

fine mesh is applied on the entire cross-section. The 

computational cost of this is of little significance, 

since only two dimensions are considered, and only a 

couple of frequencies are needed to describe the 

behavior of the tube [8]. 

 

Simulated Results 

 
We apply the proposed objective function of 

maximizing the viscous losses to a tube with a 

circular cross-section and no-slip/isothermal 

boundary conditions. The radius is 1 mm, and a 

single frequency of 3 kHz is examined. An area 

constraint of β � 0.08 is applied. The resulting 

optimized topology and viscous field  	Ψ��ξ� � Ψ�,d�ξ� 
 iΨ�,}�ξ� 
 

are shown in Figure 5. It is observed that a “tube-in-

tube” geometry has been created, with boundary 

layers meeting between the outer and the inner tube. 

 

Initial conditions were that of hollow tube, i.e. the 

entire cross-section was assigned “air” properties. 

The viscous loss for the optimized geometry is 

approximately triple that of the initial case. 

 

 
Figure 5. The viscous field Ψ�,d on the top left, Ψ�,} on the 

top right, absolute value of Ψ� on the lower left, and the 

optimized topology on the lower right (black is solid, white 

is air) for a circular cross-section. 

Since there are no limitations to the complexity of the 

cross-section, a more intricate cross-section with a 

small obstruction in the center, but with the same 

area and constraints was also investigated for the 

same frequency, as shown in Figure 6. 
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Figure 6. The viscous field Ψ�,d on the top left, Ψ�,} on the 

top right, absolute value of Ψ� on the lower left, and the 

optimized topology on the lower right (black is solid, white 

is air) for a complex cross-section with both outer and inner 

homogenous Dirichlet boundary conditions.  

It can be seen how the “solid” material is distributed 

near the boundaries to create high gradients in the 

fields; thereby giving rise to an increase in the 

dissipation. Similar to the circular geometry, the 

viscous loss per unit length for the optimized 

complex geometry is approximately triple that of the 

initial geometry. 

 

 

Hearing Aid Application Example 
 

Note: A patent application regarding a new geometry 

found in this section is currently in the works, and so 

most details regarding the geometry, the optimization 

procedure, and its purpose have been left out in the 

following description. 

 

The topology optimization was used as part of design 

process for a hearing aid related case. An optimized 

cross-section was found, and a physical sample was 

made. The construction was such that a mid-section 

could either be empty or have the optimized 

geometry placed in it. At one end a so-called coupler 

was attached, and at the other end a printed part acts 

as an interface between the tube and a hearing aid 

receiver. The physical sample is shown in Figure 7. 

 

 
Figure 7. A metal tube with an insert in the middle and a 

printed part at one end for receiver attachment. 

The target was the pressure response in the coupler. 

Simulated as well as measured results are shown 

Figure 8. 

 

 
Figure 8. The measured and simulated coupler pressures, 

respectively, for the case with no mid-section filter, and with 

an optimized filter mid-section, respectively. 

The optimized geometry showed good promise in the 

simulation with respect to the desired target, and the 

measurements confirmed that the responses actually 

were as predicted by simulations. 

 

Discussion 
 

In the present work only tubes have been considered, 

where it is assumed that the acoustic field is one-

dimensional. This of course limits the applications 

for which the method is advantageous. On the other 

hand, thermoviscous effects often present themselves 

in relatively simple geometries with a simple pressure 

field, and so the proposed method will be relevant. 

 

In the present implementation, lower-order elements 

are used amply to capture the boundary layer effects, 

but an alternative approach could be to use fewer, but 

higher-order elements. 

 

It is important to realize that each optimized design is 

dependent on several aspects of the optimization, 

such as  

 

• Choice of objective function and constraints 

• Scaling of objective function and constraints 

• Interpolation values and schemes 

• Initial values 

• Density filter radius 

• Element size and distribution 

• Element order of physics, optimization and 

filter 
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The acoustic pressure has only been evaluated 

implicitly via the velocity and thermal fields, and 

knowledge of the transmission line parameters’ 

influence on the total acoustic system. An 

optimization with an objective function directly 

containing acoustic pressure should be possible, but 

this has not yet been investigated. The proposed 

topology optimization scheme can potentially be 

expanded to a full three-dimensional formulation. 

 

It is desired to include an explicit length scale 

control, and improve the 0-1 interfaces via a 

projection filter scheme. 

 

Conclusion 
 

The current paper illustrates how COMSOL 

Multiphysics was used for stepping from an idea 

based purely on mathematics, to implementation and 

method testing, and onto a practical application. 

 

A novel topology optimization scheme for 

thermoviscous acoustics has been presented for tube 

and slit structures. Each step of the procedure is 

outlined with some details left out. The optimization 

scheme has been applied to a few tube cases, where a 

maximization of the viscous resistance was sought, 

and the resulting geometries with sufficiently binary 

designs are shown. A practical test case illustrates the 

applicability of the method to general microacoustics 

cases. 
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