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Abstract:
In a voice-coil actuated deformable mir-

ror, the controlling force is generated by the
interaction between a magnet, bonded on
the glass, and a current circulating in a wire,
inserted in a reference frame. The misalign-
ments between such two components, as well
as the mutual interaction amongst the mag-
nets, produce parasitic forces and torques.
The evaluation of such effects is of crucial
importance to model undesired deformations
on the mirror optical surface. This paper
discusses the Comsol models and the pro-
cedures implemented in order to compute
these forces and torques: the proposed nu-
merical methods are an alternative to com-
plex, expensive, and time-consuming exper-
imental tests.
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1 Introduction
The atmospheric turbulence affecting the
telescope optics is corrected by the Adaptive
Optics (AO) system by means of deformable
optical surfaces. At the Large Binocular
Telescope (LBT) and the Very Large Tele-
scope (VLT) the deformations are actuated
by voice-coil actuators, which provide a mag-
netic force generated by the interaction be-
tween a coil embedded in the Reference
Frame (RF) and a permanent magnet, the
main magnet, glued to the non-active sur-
face of the deformable mirror (DM) — me-
chanically decoupled with respect to the RF
(see Riccardi et al. [2008] and Gallieni and
Biasi [2013]). If any mechanical misalign-
ments between the DM and the RF occurs,
the coaxiality of the main magnet with re-
spect to both the coil and an auxiliary mag-
net, the bias magnet — responsible for the

restraining of the DM in case of electric fail-
ures and when the system is off — isn’t ful-
filled. Moreover, the DM isn’t flat, so that it
undergoes forces and torques due to the mu-
tual magnetic interactions between the main
magnets. Computing these two types of dis-
turbances for any kind of voice-coil driven
DM is the aim of this paper. The models dis-
cussed in the article are developed from the
geometry and the materials of the LBT DM.
On the back of its concave surface are glued
672, 1.8mm tick compounds, with a center-
to-center separation of ≈ 30mm, built of Va-
codym 510Hr — a very high energy density
NdBFe permanent magnet —, each arranged
with eight 45◦ sectors, whose outer and in-
ner diameters are 11mm and 6mm, respec-
tively, and one central cylinder whose outer
and inner diameters are 6mm and 1mm, re-
spectively. While the latter is axially magne-
tized, the magnetizations of the eight sectors
are perpendicular to the cylinder axis, ori-
ented towards the center along the bisector.
At a gap of of 400µm, the RF hosts a 3mm
height coil with 270 turns, whose outer and
inner diameters are 12mm and 6mm, and
the cylindrical bias magnet, built of SmCo,
whose outer diameter and height are, respec-
tively, 1.9mm and 4mm, and whose bottom
is separated by 2mm from the main magnet
top.

Each of the three available methods of
computation of the magnetic forces — the
Lorentz equation, the integration of the
Maxwell stress tensor, and the principle of
virtual work — must give two sets of forces
and torques whose vector sum must be 0,
according to the third principle of dynamics.
The take the error of such a sum as the mea-
sure of the accuracy of the three methods.
Because of its simplicity and accuracy, the
first method is adopted for the coil-magnet
interaction, as discussed in Sec. 4. The
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magnet-to-magnet interactions, described in
Sec. 5, requires the application of either the
integration of the Maxwell stress tensor or
the principle of virtual work. Although
the former is available in Comsol without
any additional computation, it doesn’t give
enough accuracy, in particular for the main
magnet. Moreover, the Maxwell stress ten-
sor should be computed on a surface very
closely embedding the magnet, in order to
increase the accuracy, with a consequent
growing of the mesh complexity — and con-
sequently of the number of degrees of free-
dom. For these reasons, the virtual work
method is chosen. However, as an energy-
based method, the virtual work computa-
tion requires a proper definition of both the
stored energy and coenergy in the hard mag-
netic materials. In the most general case,
so including non-linear permanent magnets,
such energies can be defined as either via a
Matlab R© numerical integration or deploying
the built-in Comsol integration operator —
hence, the default Comsol definition of the
magnetic energy is re-formulated, according
to Sec. 1.

In order to reduce the number of degrees
of freedom of the deformed geometry re-
quired to compute the forces via the virtual
work method, in all the models the magnet
domains are enclosed in a very thin (1mm)
air film — which, along with the magnet
domains, are the only “Free Deformation”
domains of the model. Finally, in order to
avoid electromagnetic field singularities, the
models are generated with fillets at the mag-
net/air interfaces. As a consequence, the
mesh is properly refined in such areas, as
depicted in Fig. 1. The various models sport
from ≈ 3 from ≈ 10 millions of degrees of
freedom.

Figure 1: Detail of the mesh at a filleted
corner.

Because of the complexity of the physics

and the geometry of the system and the ro-
tations to be applied in order to properly
compute the variation of the magnetic en-
ergy must be done around the principal axes
of inertia — which, in the most general case,
are not coincident with the X Y Z Comsol
geometry — the entire magnetic input is re-
defined according to Sec. 3.

2 PM energies
In the most general case, the stored mag-
netic energy densities E and coenergy C are
defined according to Eq. 1

E =

B∫
B0

HdB C =

H∫
H0

BdH (1)

According to Deliège et al. [2003], in the sec-
ond quadrant of the B-H plane the magnetic
energy and coenergy densities in a perma-
nent magnet with retentivity Br and coer-
civity Hc are defined according to Eq. 2

E =

0∫
Br

HdB C =

H∫
Hc

BdH (2)

Outside the second quadrant, that is when
B > Br or B < 0 (and, consequently, when
H < Hc or H > 0), the permanent magnet
behaves according to Eq. 1. Thus, E and C
are to be rewritten as

E =

B∫
0

HdB × (B < 0)+

0∫
B

HdB × (B ≤ Br)× (B ≥ 0)+

 0∫
Br

HdB +

B∫
Br

HdB

× (B > Br)

(3)

C =

H∫
Hc

BdH × (H < Hc)+

H∫
Hc

BdH × (H ≤ 0)× (H ≥ Hc)+

 0∫
Hc

BdH +

H∫
0

BdH

× (H > 0)

(4)

where the limits of the integrals are chosen
in order to obtain positive values of E and C.
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Because of the consecutiveness of the limits
of the three integrals of Eq. 4, such an equa-
tion can be simplified as

C =

H∫
Hc

BdH (5)

A different definition of the magnetic en-
ergy density is proposed by Strahan [1998],
Lovatt and Walterson [1999], and Campbell
[2000]. According to them, in a permanent

magnet E is defined as
B∫

Br

HdB, so that,

for the same reasons which led to Eq. 3 and
Eq. 4, the energy density is

E =

 0∫
Br

HdB +

B∫
0

HdB

× (B < 0)+

B∫
Br

HdB × (B ≤ Br)× (B ≥ 0)+

B∫
Br

HdB × (B > Br)

(6)

Because of the consecutiveness of the limits
of the three integrals of Eq. 6, such an equa-
tion can be simplified as

E =

B∫
Br

HdB (7)

A graphical visualization of the above de-
fined energy and coenergy is reported on
top of Fig. 2, which shows on bottom right,
for a BH curve is plotted on bottom left,
the difference between the energies defined
in Equations 3, 5 and 6. As differentiating
Equations 3 and 5 give the same force and
torques results, while differentiating 7 gives
a (moderately) lower accuracy, Eq. 5 —
which is slightly less time consuming than
Eq. 3 — is selected for the virtual work com-
putations discussed in Sec. 5.

In order to properly compute the mag-
netic energy and coenergy densities, as in
the most general case the computation can
gives B > Br and/or B < 0, the BH
curve of the chosen material should be de-
fined also in the first quadrant, as reported
by instance by Volodchenkov et al. [2017].

coenergy
H∫

Hc

BdH
H∫

Hc

BdH
0∫

Hc

BdH+
H∫
0

BdH

energy B∫
0

HdB
0∫
B

HdB
0∫

Br

HdB+
B∫

Br

HdB
(Eq. 3)

energy 0∫
Br

HdB+
B∫
0

HdB
B∫

Br

HdB
B∫

Br

HdB
(Eq. 6)

domain
H < Hc Hc≤H≤0 H > 0

B < 0 0≤B≤Br B > Br

Figure 2: Meaning of E and C in the
permanent magnet for Hc ≤ H ≤ 0 and

0 ≤ B ≤ Br (top); integral limits needed to
define the Equations 4, 3, and 6 (middle);

comparison of Equations 3 and 6 (bottom).

3 Virtualization

We consider two coordinate systems and
name the magnetic flux density as b and B,
the magnetic field as h and H and the rela-
tive permeability as µr and Mr in the two
coordinate systems, respectively. The con-
stitutive relations

b = br + µ0µrh (8)

and
B = Br + µ0MrH (9)

where br and Br are the retentivities in the
two coordinate systems, refer to the first and
second coordinate systems, respectively. If
T is the transformation matrix that converts
the first into the second coordinate system,
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so that B = Tb, Br = Tbr, and H = Th,
Eq. 9 can be rewritten as

Tb = Tbr + µ0MrTh (10)

Premultiplying both terms of Eq. 10 by T−1,
the transpose of T , since T−1T = I, Eq. 10
becomes

b = br + µ0T
−1MrTh (11)

Comparing Equations 8 and 11 gives

µr = T−1MrT (12)

and, consequently

Mr = TµrT
−1 (13)

Equations 8, 9, 12, and 13 can be easily im-
plemented in Comsol to define the physics
of the system avoiding the definition of any
auxiliary coordinate system in Comsol when
any kind of rotation (and displacement) have
to be performed — including the (infinites-
imal) ones implied by the virtual works. In
particular, Br = Tbr and Eq. 13 are used
to define the constitutive relationship of the
(typically anisotropic) permanent magnets
as a function of any displacement and ro-
tation. Although the NdBFe and the SmCo
materials used in our models exhibit a very
nearly linear BH curve, some test models
show that implementing a non-linear perme-
ability as a function of |B| or |H| by means
of the Comsol interpolation tables gives ac-
curate results.

Moreover, the rotations to be applied in
order to properly compute the variation of
the magnetic energy with the virtual works
method must be done around the princi-
pal axes of inertia of a body. Defining
the rotation vector θ = [θx; θy; θz], the trans-
formation matrix that rotates the coordi-
nate system g = [x; y; z], centered in the ori-
gin [0; 0; 0], into the global coordinate sys-
tem G = [X;Y ;Z] is G = Tg +C, and,
consequently, g = T−1(θ)(G−C). where
C is the center of rotation of G and
T = Z × Y ×X, being X, Y , and Z de-
fined according to Equations 14, 15, and 16,
respectively.

X =


1 0 0

0 cos θx − sin θx

0 sin θx cos θx

 (14)

Y =


cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy

 (15)

Z =


cos θz − sin θz 0

sin θz cos θz 0

0 0 1

 (16)

If we define the rotation vector
β = [βx;βy;βz], where βx, βy, and βz are
the rotation along the local axes x, y, and
z, respectively, the local displacement is
δ =Dg − g, where D is defined as T ,
substituting δx, δy, and δz with βx, βy,
and βz,respectively. Thus, the global dis-
placement is ∆ = Tδ = TDg − Tg. As a
consequence, the final coordinate system
G′ = [X ′Y ′Z ′], defined as G′ = G+∆, is
equal to Tg +C + TDg − Tg, that is

G′ = TDg (17)

The transformation matrix F that transform
the local coordinate system g into G′ is

F = TD (18)

Choosing x, y, and z as the principal axes
of inertia of the magnet of which we have to
compute the force, we use Eq. 18 through-
out all the models in order to define the
virtual displacements caused by the rota-
tions β without defining any auxiliary co-
ordinate system, thus reducing the compu-
tational complexity.

4 Magnet-coil

The forces f and the torques t due to a dis-
placement δ and a rotation θ of the magnet
with respect to the coil are computed with
the Lorentz equation and are summarized in
Figures 3 and 4, where f and t are plotted
versus δx and θx of the main magnet — f
and t versus δy and θy of the coil and/or the
main magnets being very close due to the
main magnet magnetizations. Both the par-
asitic effects (fx and ty for δx fy and tx for
δy; fy and tx for θx, fx and ty for θy) are
very close to linearity. The active fz is prac-
tically a constant, and the parasitic fxand
fy are always below the 3% of fz, even for
alignments tolerances as large as ±.1mm or
±1.5◦.
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Figure 3: f and t for main magnet δx.

Figure 4: f and t for main magnet θx.

5 Magnet-magnet

5.1 Crosstalk
In principle, each magnet glued on the back
(non active) surface of the DM is magnet-
ically coupled with all the other magnets.
This force decays very rapidly with the dis-
tance. Because the magnets are all spaced
by ≈ 30mm, only two interactions are con-
sidered: the magnetic force between the ac-
tuators 1 and 2, located on the first ring of

actuators at radius 43.044mm and separated
by angle β equal to 44◦, and the magnetic
force between the actuators 1 and 10, located
on the x axis and separated by a distance δ
equal to 30.31mm. In both cases the virtual
works computation poorly verifies the third
principle of dynamics, so that we run two
sets of computations: instead of computing
the interaction between two actual pairs of
magnets, in the first case, the angular sep-
aration is increased from β = 18◦ by steps
of 1◦, in the second one the distance is in-
creased from δ = 14mm by steps of 1mm.
In both runs, the analysis is halted if the
angle between the two forces and torques is
< 170◦ or if the difference between the norms
of the forces and the torques is > 2%. Fit-
ting the computed forces and torques as a
function of β and δ, respectively, with the
Two-Term Exponential Model of the curve-
fit toolbox of Matlab R© shown in Eq. 19, al-
lows to define the above mentioned interac-
tions — namely the force F and the torques
T1 and T2 with respect to the mean plane
of the DM at the nominal locations of the
two magnets, respectively — by means of
the parameters listed in Tab. 1, with fit-
ting errors ≤ .25% for 14mm ≤ δ ≤ 18mm
and ≤ .6% for 18◦ ≤ δ ≤ 25◦. The direc-
tions of F and T1 and T1 are shown in Fig. 5
for β = 18◦ and for δ = 14mm. Eq. 19
gives F = 0.657mN, T1 = 4.070N× µm,
and T2 = 4.143N× µm, for β = 40◦,
and F = 0.959mN, T1 = 6.617N× µm, and
T2 = 5.656N× µm, for δ = 28mm. As such
values are very low— the typical turbulence-
correction force is ≈ .4N rms and the max-
imum dynamic force is ≈ 1.3N — the
strengths on the mirror shell are totally neg-
ligible — also, as the sums of these forces
and torques are null, they don’t affect the
DM global statics. Nevertheless, Eq. 19 and
Tab. 1. allow to determine a lower limit for
the actuator separation.

f(x) = C1e
k2x + C2e

k2x (19)

f(x) x C1 k1 C2 k2

F 16550.3 -37.4582 5.09809 -12.8304

T1 β 18.9089 -35.088 0.0097198 -11.1418

T2 12.7918 -33.9237 0.00780015 -10.8013

F 21777.2 -900.256 6.56426 -313.77

T1 δ 10.64 -775.193 0.00771193 -250.873

T2 21.5468 -836.01 0.0112864 -269.964

Table 1: The parameters used to fit the
exponential decay (see Eq. 19).
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Figure 5: Top view of the two main magnets separated by β = 18◦ (left) and by δ = 14mm (right).

5.2 Bias

The forces and the torques due to a displace-
ment and a rotation of the main magnet with
respect to the bias magnet, computed with
the virtual works method, are summarized
in Fig. 6, where the forces fx, fy, and fz
and the torques tx, ty, and tz are plotted
versus the x displacements and rotations of

the main magnet — the forces and torques
versus the y displacements/rotations of the
bias magnet and/or the main magnets be-
ing very close due the geometry of the main
magnet magnetizations. In both cases the
force parallel to the displacement, is a small
fraction (≤ 2% for |δ| ≤ .1mm and |θ| ≤ 1 ◦)
of fz, and the torques are ≤ 10N× µm, to-
tally tolerable.

Figure 6: Forces and torques for main magnet x displacements (left) and x rotations (right).
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6 Conclusions

We investigated the parasitic magnetic
forces and torques affecting a deformable
mirror controlled via voice-coil actuators.
We addressed in particular two cases:
the magnet-to-coil/bias versus their relative
misalignments and the mutual magnet-to-
neighbor magnet interaction. The analysis
is carried out by the implementation of the
virtual work principle in Comsol. We consid-
ered the particular case of the Large Binoc-
ular Telescope Deformable Mirror. The sim-
ulation results show tolerable values. In
fact, the crosstalk between the permanent
magnets gives forces three orders of magni-
tude lower than the typical correction force
and torques of few N× µm, while the in-
teractions between main magnet and coil
or bias magnet give parasitic effects within
few percent of the active force and torques
< 100N× µm even in the worst, overesti-
mated misalignment case. The proposed
method is a valuable tool to predict the min-
imum actuator spacing for the future, pos-
sible high spatial-density, large deformable
mirrors and to define the tolerances when
manufacturing a component as delicate as
an Adaptive Optics system.

References

P. Campbell. Comments on "Energy
stored in permanent magnets". IEEE
Transactions on Magnetics, 36(1):401–
403, jan 2000. doi: 10.1109/20.822554.
URL https://doi.org/10.1109%2F20.
822554.

G. Deliège, F. Henrotte, H. Vande Sande,
and K. Hameyer. 3D h-phi finite element
formulation for the computation of a lin-
ear transverse flux actuator. "COMPEL",

22(4):1077–1088, 2003. ISSN 0332-1649.
doi: 10.1108/03321640310483011.

D. Gallieni and R. Biasi. The new VLT-
DSM M2 unit: construction and elec-
tromechanical testing. In S. Esposito and
L. Fini, editors, Third AO4ELT Confer-
ence, Proc. AO4ELT. AO4ELT, 5 2013.
doi: 10.12839/AO4ELT3.17883.

H. Lovatt and P. Walterson. Energy stored
in permanent magnets. IEEE Transac-
tions on Magnetics, 35(1):505–507, 1999.
doi: 10.1109/20.737473. URL https://
doi.org/10.1109%2F20.737473.

A. Riccardi, M. Xompero, D. Zanotti,
L. Busoni, C. Del Vecchio, P. Salinari,
P. Ranfagni, G. Brusa Zappellini, R. Biasi,
M. Andrighettoni, D. Gallieni, E. Ana-
clerio, H. M. Martin, and S. M. Miller.
Adaptive secondary mirror for the Large
Binocular Telescope: results of acceptance
laboratory test. In C. E. Max, P. L.
Wizinowich, and N. Hubin, editors, Adap-
tive Optics Systems, volume 7015 of Proc.
SPIE, pages 12.1–12.9. SPIE, 6 2008.

R. Strahan. Energy conversion by nonlin-
ear permanent magnet machines. IEE
Proceedings - Electric Power Applications,
145(3):193–198, 1998. doi: 10.1049/
ip-epa:19981863. URL https://doi.
org/10.1049%2Fip-epa%3A19981863.

A. Volodchenkov, S. Ramirez, R. Samnakay,
R. Salgado, Y. Kodera, A. Balandin, and
J. Garay. Magnetic and thermal trans-
port properties of SrFe12O19 permanent
magnets with anisotropic grain structure.
Materials & Design, 125:62 – 68, 2017.
ISSN 0264-1275. doi: https://doi.org/10.
1016/j.matdes.2017.03.082. URL http:
//www.sciencedirect.com/science/
article/pii/S0264127517303374.

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam

https://doi.org/10.1109%2F20.822554
https://doi.org/10.1109%2F20.822554
https://doi.org/10.1109%2F20.737473
https://doi.org/10.1109%2F20.737473
https://doi.org/10.1049%2Fip-epa%3A19981863
https://doi.org/10.1049%2Fip-epa%3A19981863
http://www.sciencedirect.com/science/article/pii/S0264127517303374
http://www.sciencedirect.com/science/article/pii/S0264127517303374
http://www.sciencedirect.com/science/article/pii/S0264127517303374

	Introduction
	PM energies
	Virtualization
	Magnet-coil
	Magnet-magnet
	Crosstalk
	Bias

	Conclusions



