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Introduction 

 
For non-imaging echo sounding applications in the 

human body Novioscan is developing piezoelectric 

micromachined ultrasound transducers (PMUT). 

Here, transducers send intermittent ultrasonic pulses 

into the body and detect their echoes to measure for 

example bladder size [1]. 

 

Figure 1. Single circular membrane of PMUT with deflected 

surface when excited. 

The developed PMUTs contain a large number of 

micromechanical silicon membranes with 

piezoelectrically actuated regions to generate 

ultrasonic pressure waves in the patient’s body.  

 

Figure 2. Actuation of membrane by local expansion / 

contraction of piezoelectric material (PZT) film. An 

electrostatic voltage across the film thickness, a), translates 

via in-plane expansion to an out-of-plane displacement, b). 

For Novioscan’s bladder monitor, circular 

membranes of resonant frequency in the low MHz 

                                                           
1 “De activiteiten worden mede mogelijk gemaakt door de 

Europese Unie en het Europees Fonds voor Regionale 

Ontwikkeling.”  
 

range are a suitable starting point for designing and 

modeling a prototype PMUT. 

Actuation of the circularly clamped membranes 

happens through the local expansion and contraction 

of a piezoelectric material film on top of the silicon 

surface (Figure 2). 

Figure 3 shows a cross section of the simulated SOI-

based piezoelectric MEMS circular diaphragm. The 

top electrode covers 56% of the size of the 

diaphragm, roughly the area that has a positive 

curvature, where the rest has a negative one, or vice 

versa. This ensures a most efficient ultrasound 

generation. 

 

Figure 3. Cross section view of circular membrane used in 

this article. Membrane diameter D equals 100 µm. 

Analytic model 
 

For a membrane consisting of a stack of N layers, 

where each layer, numbered i, has thickness Ti, we 

can calculate the moment Mpiezo due to the 

piezoelectric actuation of the PZT layer by a voltage 

V [1]: 

𝑀piezo =
𝑑31,𝑓∙𝑌PZT

(1−𝜈PZT
2 )

 
𝑉

𝑇PZT
∫ (𝑡 − 𝑡𝑛)d

𝑡𝑖+𝑇PZT

𝑡𝑖

𝑡 

with 

• d31,f, transverse piezoelectric coefficient for 

a PZT layer fixed on a rigid substrate,  

• YPZT, Young’s modulus of the PZT layer 

material, 

• ti, coordinate of the bottom of the PZT layer,  

• νPZT, Poisson ratio for PZT.  
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We estimate the moment due to the piezoelectric 

actuation for a diaphragm of total thickness T, 

consisting of mainly a silicon layer of thickness Tsi, 

topped by a stack N-1 thin layers of thickness Ti with 

material properties with index i, where the PZT layer 

is on top:  

𝑀piezo ≈
𝑑31,𝑓 𝑌PZT 𝑉

2 (1−𝜈PZT
2 )

(2𝑇 − 𝑇si − 𝑇PZT −
𝑇∙𝑇corr,𝑌

𝑇Si+𝑇corr,𝑌
) 

with 

𝑇corr,𝑌 =
𝑌PZT

𝑌Si

 𝑇PZT +
𝑌Pt

𝑌Si

 𝑇Pt +
𝑌SiO2

𝑌Si

 𝑇SiO2 

 

Table 1. Material properties of layers in used membrane (Figure 3). 

Material Ti 

(μm) 

d31 

(pm/V) 

ρi 

(kg/m3) 

Yi 

(GPa) 

νi ρi/ρSi Tcorr,ρ Yi/Ysi Tcorr,Y 

Pt 0.0 
 

21090 138 0.25 9.1 0.0 0.9 0.0 

PZT 1.0 123 7500 95.2 0.35 3.2 3.2 0.6 0.6 

Pt 0.1 
 

21090 138 0.25 9.1 0.9 0.9 0.1 

SiO2 0.5 
 

2200 70 0.17 0.9 0.5 0.4 0.2 

Si 5.0 
 

2329 169 0.064 1.0 
 

1.0 
 

Membrane 6.6 
     

4.6 
 

0.9 

 

Static deflection for a circular clamped diaphragm, 

consisting of mainly a silicon layer of thickness TSi 

and N-1 thin top layers of thickness Ti of material i, 

with PZT layer close to the top, is found to be [1]: 

𝑧0, max =   ∫
1

𝑠
∫

𝑀piezo

𝐷𝑚

𝑟
𝑅𝑖𝑛

0

1
2

𝐷eff

0

 d𝑟 d𝑠 

 ≈ 3 𝑑31,𝑓
(1−𝜈𝑆𝑖

2)

(1−𝜈PZT
2)

𝑌PZT

𝑌𝑆𝑖
𝑉

𝑅𝑖𝑛
2

𝑇𝑆𝑖
2 ln (

𝐷eff

2 𝑅𝑖𝑛
) ∙ 𝜁 

with 

• Deff = D + 1.5 T, with membrane diameter D 

and total membrane thickness T, 

• z0,max, maximum static displacement at the 

membrane centre, 

• Rin, inner diameter of the top electrode,    

•         𝐷𝑚 ≈
𝑌𝑆𝑖 𝑇𝑆𝑖

2

12(1−𝜈2)
 [𝑇𝑆𝑖 + 3𝑇corr,𝑌 (1 +

2
𝑇−𝑇𝑆𝑖

𝑇𝑆𝑖
− 

𝑇corr,𝑌

𝑇𝑆𝑖
)], 

• 𝜁 ≡
2𝑇−𝑇𝑆𝑖−𝑇PZT−

 𝑇∙ 𝑇corr,𝑌 

𝑇𝑆𝑖 + 𝑇corr,𝑌

 𝑇𝑆𝑖+3
𝑇𝑆𝑖 𝑇corr,𝑌

(𝑇𝑆𝑖 + 𝑇corr,𝑌)
(

𝑇

𝑇𝑆𝑖
)

2  

Considering the deflection of the membrane as a 

function of radial coordinate r: 

𝑧(𝑟) = 𝑧0, max ⋅ (1 − (
2𝑟

𝐷eff
)

2

)
2

, 

the surface averaged displacement z0,avg turns out to 

be one third of the maximum static displacement: 

z0, avg =
8

𝐷eff
2 ∫ 𝑧(𝑟)

1
2

𝐷eff

0

 𝑟 d𝑟 =
1

3
z0, max 

 

Newton’s law of force yields a differential equation 

for the time dependence of the average displacement 

zavg of the circular membrane with damping 

coefficient bm,plate and driven by an oscillatory force 

Fpiezo with an acoustic medium on one side that 

influences the membrane by the force Faco.  

𝑚plate𝑧̈avg + 𝑏m,plate𝑧̇avg + 𝑘plate𝑧avg = 𝐹piezo − 𝐹aco 

  ⇒  𝑚plate𝑧̈avg + (𝑏m,plate +

𝑍rad)𝑧̇avg + 𝑘plate𝑧avg = 𝐹piezo  

with 

• mplate, effective mass of the membrane, 

• kplate, stiffness of the membrane, 

• bm,plate, mechanical damping coefficient of 

the membrane, 

• Fpiezo, total force by the PZT material on the 

membrane, 

• Faco, total force on the membrane by the 

acoustic medium on one side of the 

membrane, 

• Zrad, complex-valued radiation impedance. 

 

The radiation impedance Zrad describes the interaction 

of a transducer with the acoustic medium, thus we 

take Faco ≈ Zrad 𝑧̇avg, where 𝑧̇avg is the velocity of the 

membrane, averaged over its surface area. The 

complex radiation impedance is conventionally split 

into Zrad = Rrad + j Xrad.  

The real part, Rrad, called the radiation resistance, 

denotes the amount of the power radiated to the 

medium; whereas the imaginary part, Xrad, the 

radiation reactance, shows the stored energy in the 

near field. At lower frequencies, the real part and the 

imaginary part of the radiation impedance can be 

approximated as [2]: 

𝑅𝑒(𝑍rad) = 𝑅rad(𝜔) ≈
1

2
𝜌aco 𝑐aco 𝐴(

𝜔𝐷eff

2𝑐aco
)

2

=
𝜋

32

𝜌aco

𝑐aco
𝐷eff

4𝜔2 

with 
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• ρaco, mass density of the acoustic medium, 

• caco, sound velocity in the acoustic medium, 

• A, surface area of the membrane. 

𝐼𝑚(𝑍rad) = 𝑋rad(𝜔) ≈ 2ℎ00 𝜌aco 𝑐aco 𝐴(
𝜔𝐷eff

2𝑐aco
)

= ℎ00 𝜌aco 
𝜋

4
 𝐷eff

3  𝜔 ≡  𝑚aco 𝜔  

with 

• maco, effective mass loading of the acoustic 

medium on the membrane, 

• h00 = 0.335, effective thickness of the 

acoustic medium load on the membrane as a 

fraction of Deff [3]. 

 

This result allows us to write the membrane’s 

equation of motion as follows: 

(𝑚plate + 𝑚aco)𝑧̈avg + (𝑏m,plate + 𝑅rad)𝑧̇avg

+ 𝑘plate𝑧avg = 𝐹piezo  

 

Setting initial conditions to zavg(0)=0 and 𝑧̇avg(0) = 0 

the transient solution for zavg(t) can be found from the 

convolution integral [4]: 

𝑧avg(𝑡) =
∫ 𝐹piezo(𝑡−ℎ)𝑒−γℎ sin 𝜔1ℎ∙dℎ

𝑡
0

(𝑚plate+𝑚aco)𝜔1
 

with 

• 𝛾 =
𝑏m,plate+𝑅rad

2(𝑚plate+𝑚aco)
, 

• 𝑚plate =
48 𝜋

10.222 𝜌𝑠𝑖(𝑇si +  𝑇corr,𝜌)𝐷eff
2 , 

• 𝑘plate = 768π 
𝐷𝑚

𝐷eff
2 , 

• 𝜔1 = √
𝑘plate

(𝑚plate+𝑚aco)
−𝛾2, 

and 

𝐹piezo = 128𝜋 𝑀piezo

𝑅𝑖𝑛
2

𝐷eff
2 ln (

𝐷eff

2 𝑅𝑖𝑛

) 

Table 2. Parameter values for the membrane in current 

study. 

Parameter Value Unit 

D 100 µm 

T 6.6 µm 

Deff 109.9 µm 

Rin 25.0 µm 

Dm 3.15 10-6 Nm 

∂Mpiezo/∂V 41.3 10-6 N/V 

ζ 0.674 
 

∂z0,max/∂V 3.01 10-9 m/V 

kplate 0.628 106 N/m 

mplate 0.391 10-9 kg 

 

For the pressure amplitude generated in the far-field 

pff, we approximate the MEMS membrane by a 

piston of the same area and we take the displacement 

averaged over this area: 

𝑝ff(𝑠) = 𝑝0

 𝑅0

𝑠
= 𝜌aco𝑐aco𝑢avg

𝐴

𝜆𝑠
=

𝜌aco

8

𝜔

𝑠
𝐷eff

2  𝑢avg 

• s, perpendicular distance to the MEMS 

membrane, 

• p0=ρaco caco uavg, theoretical surface pressure, 

• ρaco, density of acoustic medium, 

• caco, sound velocity in acoustic medium, 

• uavg, velocity of the membrane averaged 

over the effective surface area. 

• R0=A/λ, Rayleigh distance, 

• A, surface area of the membrane, 

• λ, wavelength of pressure wave. 

 

 

Figure 4. Far-field acoustic pressure pff at a distance s of the 

membrane transducer. 

Simulation model 
 

The simulation model describes the development in 

time of membrane amplitude and transmitted acoustic 

pressure in water upon excitation by a voltage pulse 

on the piezoelectric layer of the membrane. 

Beginning with an isolated, single membrane, 

simulations were run on simultaneously excited 

membranes in 2x2, 3x3 and 4x4 square arrays (Figure 

5).  

 

 

Figure 5. Simulated PMUTs as single (I) membrane, 2x2 

(II), 3x3 (III) and 4x4 (IV) square arrays of these 

membranes. 

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



COMSOL 5.2 with Acoustics Module was used to 

build a 3D model from the pre-defined Acoustic-

Piezoelectric Interaction, Transient interface. Via 

nodes in the added branches for Solid Mechanics, 

Electrostatics and Pressure Acoustics physics 

interactions are controlled in detail. 

 

Figure 6. Geometry of COMSOL simulation model. The 

quarter hemispherical part represents the acoustic water 

domain. 

A geometry for the simulation model must represent 

the application of an ultrasound transducer 

transmitting sound into an unbounded space of the 

acoustic medium (Figure 4). Given the planar 

symmetry of the respective structures in both yz- and 

zx-plane, we create a 3D model geometry as shown 

in Figure 6. Thus, only mesh distributions on domain 

parts constituting one quarter of the true 

configuration are needed, which alleviates the 

computational effort accordingly. 

The acoustic water domain is shaped as a hemisphere 

with a radius of 5Larray to absorb waves transmitted 

from the transducer equally in all directions. A 

radiation boundary condition on the outer surface 

allows the outgoing waves to leave the modeling 

domain with minimal reflections, simulating the 

unbounded expanse of the water domain. 

The transducer models are attached to the hemisphere 

center and take into account the planar symmetries: 

the circular membrane transforms into a quarter pie 

(Figure 7). Materials are assigned according to the 

cross section view in Figure 3 and have properties 

according to Table 1. 

 

Pulse excitation and solver settings 
 

The membrane is excited by a Gaussian voltage pulse 

on the top electrode (Figure 7), defined as: 

𝑉(𝑡) = 𝑉0 ∙ 𝑒−2𝜋2(𝑓pulse𝑡−1)
2

 
As can be shown from the Fourier transform of this 

function, the frequency spectrum of the pulse cuts off 

sharply at fpulse. As a result, the generated pressure 

variations in the acoustic domain will not have 

wavelengths shorter than caco/fpulse, limiting the 

required mesh resolution.  

In the solver settings, time-step size is fixed using a 

CFL number of 0.05 to limit temporal discretization 

errors in the generalized-α solving method [5].  

 

 

Figure 7. Transducer membrane and electrode area 

(shaded). 

Mesh 
 

Structured mesh distributions are generated in the 

domains of the transducer to achieve best element 

quality with the least amount of elements.  

In the acoustic medium domain, we generate a free 

tetrahedral mesh to ensure isotropic solution 

conditions for radiated pressure waves.  

 

 

Figure 8. Structured mesh distribution used for every 

membrane in the array. 
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Here, the maximum mesh size, yielding a proper 

sampling of radiated pressure waves, is set to 1/6th of 

the smallest wavelength generated during the pulse 

excitation. This wavelength is the speed of sound in 

water (1481 m/s) divided by the cut-off frequency, 

fpulse, of the voltage pulse frequency spectrum. All 

other tetrahedral mesh parameters are kept relaxed. 

The structured mesh of the transducer begins with a 

triangular boundary mesh on the top surface which is 

extruded through the layers in the membrane part. A 

second extrusion is performed for the thicker handle 

layer part. 

 

Table 3. Parameter values used in simulations of pulse 

excited square membrane arrays of 1x1, 2x2, 3x3 and 4x4 

sizes. 

Parameter Value Unit 

D 100 µm 

Δ 50 µm 

fpulse 4.0 MHz 

V0 1.0 V 

maco 0.349 10-9 kg 

Rrad 6.13 10-3 kg/s 

bm,plate 0.00 10-3 kg/s 

γ 4.13 106 rad/s 

ω1 28.8 106 rad/s 

ρwater 998 kg/m3 

cwater 1481 m/s 

 

 

Simulation Results and Discussion  
 

For square membrane arrays of 1x1, 2x2, 3x3 and 

4x4 size with parameter values according to Table 3, 

the simulations result in a rich collection of data on 

membrane displacement and pressure variations in 

the water domain. 

The time development of the membrane center 

displacement shows well how the water dampens the 

membrane motion (Figure 9). The generated pressure 

wave as a result of this displacement then travels 

along the acoustic axis in about 1.5 µs to the edge of 

the water domain (Figure 10). 

As shown in Figure 11 the peak pressure of the wave 

has decayed considerably on this edge. Using a 1/s fit 

model on the furthest points of the decay curve (s > 

1.2 mm), we extrapolate the acoustic peak pressure in 

the far-field for each array. 

This results in the graph of Figure 12 where we see 

that the generated pressure of the array is entirely 

proportional to the number of membranes. A linear fit 

forced through the origin indicates a pressure level of 

10.9 Pa per membrane at 100 mm distance. If we 

compare this to the analytic result from 

𝑝ff(𝑠) =
𝜋

4

𝑓pulse

𝑠
𝜌water𝐷eff

2  𝑢peak, avg 

with 

𝑢peak, avg = 0.030 m
s⁄ , computed from the time-

derivative of 

𝑧avg(𝑡) =
∫ 𝐹piezo(𝑡−ℎ)𝑒−γℎ sin 𝜔1ℎ∙dℎ

𝑡
0

(𝑚plate+𝑚aco)𝜔1
 

reading 

𝑝ff(0.1 m) = 11.4 Pa 

we find a great agreement of simulation with theory. 

 

 

Figure 9. Time development of membrane center 

displacement in water as a result of the 1 Volt excitation 

pulse. 

 

Figure 10. Time development of acoustic pressure in water 

at 1.6 mm distance from the membrane array surface as a 

result of the 1 Volt excitation pulse. 
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Figure 11. Decay of peak pressure values in the generated 

pulse train of Figure 10 along the acoustic axis of the 

membrane arrays. 

 

Figure 12. Dependency of far-field acoustic pressure at 100 

mm distance on number of membranes in the array. 

In a parametric study, we simulated acoustic 

pressures and derived far-field peak pressure values 

by the 4x4 membrane array as a function of pulse 

duration (Figure 13). Although peak pressure at 100 

mm decreases steadily with pulse duration, defined as 

1/fpulse, the acoustic impedance Zaco (i.e. pressure/ 

volume velocity) shows a maximum at a duration of 

0.25 µs or fpulse = 4.0 MHz. This is logical given the 

resonance frequency of the membranes in water, f1 = 

ω1/(2π) = 4.6 MHz. 

As a last result, we present the dependency of far-

field acoustic pressure at 100 mm on distance 

between membranes, Δ (Figure 14). Interestingly, 

acoustic pressure appears to be minimum for an 

intermembrane distance Δ equal to the membrane 

diameter D of 100 µm. 

 

Conclusions 
 

We present a series COMSOL simulations in full 3D 

piezo-acoustics for the time-dependent study of 

pressure waves generated by square array 

piezoelectric MEMS ultrasound transducers (PMUT). 

Finding good agreement of the simulation results with 

theory, we establish a reliable method for the 

simulation based design of new PMUTs in pulsed 

operation mode. 

 

 

Figure 13. Dependency of far-field acoustic pressure at 100 

mm distance generated by a 4×4 membrane array on 

duration of the 1 Volt excitation pulse. 

 

Figure 14. Dependency of far-field acoustic pressure at 100 

mm distance generated by a 4×4 membrane array on distance 

between membranes Δ. 
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