
A Standalone Interface for Web-Based Virtual Reality of Calculated Fields 

M. Jüttner, N. Zhao, and S. Grabmaier 

University of Stuttgart - Institute for Theory of Electrical Engineering,  

Pfaffenwaldring 47, 70569 Stuttgart, Germany 

 

Introduction 

The fifth-generation of the web standard HTML in 

combination with Cascading Style Sheets (CSS) and 

JavaScript (JS) enables a standalone cross-platform 

web application for the visualization of COMSOL 

Multiphysics® results [1]. Using it, teaching, product 

or research presentations as well as modern simulation 

engineering profit from the provided accessible and 

lightweight web-based visualization system without 

any dependencies on plugins and other external librar-

ies. The applied web standard enhances the support for 

multimedia and graphics for every modern device and 

every actual web browser. An example is the Web 

Graphics Library (WebGL). It was introduced in 

HTML5 and enables the GPU acceleration for web ap-

plications. Using WebGL, even the realization of Vir-

tual Reality (VR) within a web application gets possi-

ble. VR provides an even more immersive experience 

of three-dimensional (3D) simulation results and sup-

ports a better understanding of the numerical results. 

As an intermediate step, also the visualization at 3D-

TVs gets possible.  

In this paper, a modern and improved user friendly 

Graphic User Interface (GUI) is presented. Using up-

coming web technologies, it provides an interactive 

VR interface to visualize COMSOL Multiphysics® 

simulation results. Thereby, it extends the existing 

standalone web-based visualization system for simu-

lation results [1]. Its web-based implementation ena-

bles a usage across multiple platforms like mobile 

phones, tablet computer and 3D-TVs. Since no de-

ployment is required, it is also applicable for head 

mounted VR displays. Here, details about its imple-

mentation and the updated visualization system are 

given. This includes details for rendering elements like 

the legend within the visualization and its adaption to 

hardware depended specifications.  

The paper is organized in six chapters. While chapter 1 

gives the introduction, chapter 2 describes the updated 

architecture and the components of the corresponding 

visualization system including the data preparation. 

Chapter 3 give details about the design of the web ap-

plication. How stereo displays are supported is de-

scribed in chapter 4. Chapter 5 shows evaluations of 

the implemented system. A conclusion and outlines to 

further work are given in chapter 6. 

Visualization System 

To visualize COMSOL Multiphysics® diagrams in an 

independent web application the system architecture 

shown in fig. 1 is used.  

Web-Server

Web-Client

HTML

WebGL

Renderer

HTTP

web

sockets

Data-Export

SFTP

Simulationtool

*.mph

Java 

API

*.json 

*.bin

GUI

 
Figure 1: System architecture 

To provide visualization at the web client, an adminis-

trator selects meaningful diagrams from multiple ex-

isting models and provide related data by the COM-

SOL Java API (CJAPI). To use the CJAPI, a Java ap-

plication is created. The Java application accesses the 

model object and extracts meta information and raw 

rending data from the diagrams. Therefore, selected 

plotGroup objects and their rendering groups are eval-

uated. They contain the required numerical rendering 

data and additional meta information. Examples are 

vertices and point data as well as derived information 

like the bounding box calculated from the minimum 

and maximum values of the coordinates. Also, names, 

tags and data types defined within the COMSOL 

model are used based on the existing model structure. 

This enables the compatible handling of multiple mod-

els and different diagrams by this framework. The hi-

erarchical model structure and the extracted meta in-

formation for the model “piezoacoustic transducer” 

from the model library are shown in fig. 2 within the 

developed Java application for the administrator.  

 
Figure 2: Java application 

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



Enabling WebGL to render a diagram, the numerical 

data is converted as described in [1]. While the data 

type of the numerical values is adapted and stored as 

binary data, meta information including their connec-

tion to the binary data is handled separately in a JSON 

file. JSON is used as file format for data exchange be-

cause it is easily read- and writeable for humans as 

well as easily generate- and parseable for machines. 

Since JSON is a subset of JS [2], JS provides native 

support for receiving and parsing JSON format. Via 

the Secure File Transfer Protocol (SFTP), the files are 

uploaded to a common web server. As backend of the 

visualization system, it provides a web application and 

all necessary data for visualization. Node.js is used as 

web server since it is built on Google’s JS runtime en-

vironment. Its event-driven architecture and asynchro-

nous I/O capability provide good performance even 

for handling large data [3]. Initially, the webserver 

transmits the single page web application. The trans-

mission of the binary visualization data is realized by 

WebSockets. Interactions are enabled based on re-

quests handling. 

Web Application 

The visualization application is supposed to run on all 

modern devices that provide a nowadays web browser. 

HyperText Markup Language (HTML), Cascading 

Style Sheets (CSS) and JavaScript (JS) are considered 

as the primary technologies to build a web application. 

A Document Object Model (DOM) is used to describe 

logical relation between the applications structure ele-

ments. While loading such a web site, the browser 

parses the HTML file into a hierarchical DOM. This 

DOM is accessed and manipulated through CSS and 

JS. This enhance web sites to be more dynamic and 

interactive. To support various platforms and devices, 

a Responsive Web Design (RWD) [4] is done. As ex-

ample for RWD, media queries introduced in CSS3 are 

used to check the capability of a device and define dif-

ferent style rules for each media type. They include 

blocks of CSS code within the website only, if a cer-

tain condition is true. Their syntax is  

@media not | only media type and ( media feature ) { 

CSS−Code ;}, 

where media types and features are predefined expres-

sions. They are applied e.g. on the logo elements in the 

navigation bar. The logos appear in full size, when the 

application is accessed from a desktop computer with 

a maximized window. Only the icons are shown when 

the application is used at a mobile device. In fig. 3 the 

different layouts of the logos are given. 

  
Figure 3: Logo element under different display mode 

Another example is the font size that needs to be scaled 

in relation to the screen size to achieve a consistent ex-

perience from the GUI. Therefore, the units rem are 

used that were also introduced in CSS3. They specify 

the size of a CSS property relative to the size of a root 

element. In addition to CSS the layout is also altered 

by JS. For instance, when the size of the visualization 

window is reduced, menus are collapsed and replaced 

by a smaller navigation bar. During the process of col-

lapsing and expanding the size of related elements are 

also recalculated and resized. In the same way, differ-

ent display sizes are handled. This dynamic behavior 

is also applied for other components such as a switch 

for different display modes. For simplicity, no hori-

zontal or vertical scrolling is featured except in such 

components like the property menus. 

When loading the application, first a wire frame is cre-

ated that contains menus to setup the visualization. 

Since the web server offers access to multiple models, 

the user selects one model and then the diagram to vis-

ualize. Now features like a reset of the visualization 

window, color table modifications, light effects and 

other user interactions are provided. Advanced options 

like a switch of the display to full screen or stereo dis-

play mode are always present. Rendering the COM-

SOLs data within the web application is done using 

WebGL. It is used in HTML5 canvas elements. So, in-

teractive 3D graphics within compatible web browsers 

without any plugins are enabled. 2D diagrams are also 

possible and we decide to disable the rotation interac-

tion. In fig. 4 the design elements of a web application 

using WebGL are shown. Elements added in compar-

ison to a common website are highlighted.  

Rendering engine

Programming languages

Browser

HTML CSS Javascript GLSL ES

Javascript
DOM Painter

WebGL

Supplementary elements
 

Figure 4: Web application elements 

Rendering is done according to the pipeline defined by 

WebGL [5]. Within the pipeline, programmable ver-

tex and fragment shader inherited from the Open 

Graphics Library for Embedded Systems (OpenGL 

ES) and programmed in the OpenGL shading language 

(GLSL ES) are executed on a graphic processing 

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



unit (GPU). Since several steps of the rendering pipe-

line are modified in chapter 4 to provide a stereoscopic 

visualization, a short introduction is given.  

After initializing WebGL, the vertex shader is exe-

cuted to process vertex arrays and buffer objects. It 

performs general operations like transformations and 

rotations on vertices. While 3D objects are handled 

with a perspective projection, an orthographic projec-

tion is applied for 2D objects. Examples for constantly 

present 2D objects are the coordinate indicator object 

and the diagrams legend. In addition, the vertex shader 

calculates the coefficient for the shading model per 

vertex based on the Phong reflection model. The prim-

itive assembly converts the vertex stream into a se-

quence of base primitives. The base primitives are 

points, lines or triangles. If a primitive is not com-

pletely within the frustum of sight, clipping is needed. 

The frustum of sight is represented by a virtual camera 

with its point of view, its near and a far clipping plane, 

its screen ratio and its four borders at the sides. The 

rasterization step converts the base primitives to frag-

ments that represent pixels and can be displayed on 

screen. It also blends assigned colors to the fragments. 

The following fragment shader process fragments. 

This includes several tests like the scissor test, the 

stencil test and the depth test to ensure a correct visu-

alization. Afterwards per fragment operations are per-

formed before the final pixel array is stored in the 

framebuffer. 

To obtain a diagram, the prepared binary data and meta 

information are provided by the web server. Since 

WebGL 1.0 supports only 16 bit indexing, the data 

segments are split in in 65k blocks at the web client. 

The actual draft of the WebGL 2.0 specification cur-

rently supports 32 bit indexes. This splitting holds for 

values e.g. vertices and their attributes. Once the raw 

WebGL data is prepared, the rendering process is exe-

cuted. During the rendering process, the performed 

transformation also changes the coordination system. 

Like after clipping the coordination system is normal-

ized. Data is finally projected to the screen by perform-

ing the viewport transformation. To do so, a viewport 

is defined by two coordinates and the screen size. In 

case of multiple viewports, the data in the buffer ob-

jects is reused for rendering in one canvas element to 

reduce the calculation effort. To generate text content 

within WebGL, texture mapping is applied. The re-

lated 2D canvas is mapped to a target point. This bill-

board or point sprite technique faces the text to always 

point toward the viewer. Based on the same principle 

and in combination with an orthographic projection 

the color legend is created. For creating it labels meta 

information from the JSON file are used. Fig. 5 shows 

the resulting GUI for the wrench of the model library. 

 
Figure 5: Visualization of a wrench within the web appli-

cation on a desktop computer 

Stereo Displays  

Using 2D images to create a 3D experience for a user 

is the idea of stereo displays. In addition to the 2D in-

formation also depth information is provided. Interac-

tion get possible with controllers like the mouse, the 

keyboard, touch inputs, sensors like an accelerometer 

and a gyroscope or techniques like motion capturing, 

eye tracking and speech recognition. In the following 

the fundamentals for stereo displays are given. 

The binocular vision describes the physiology to see 

with two eyes. Because of the interpupillary distance 

between the eyes we simultaneously see two slightly 

different perspectives of one scene. The disparity of 

two views is fused to generate the 3D stereopsis im-

pression [6]. The eyes accommodation and conver-

gence enables us to automatically see near and far ob-

jects clear and without diplopia (double visions). Di-

plopia obviously depend on the eyes focus. When the 

eyes converge at the same point, it has zero parallax. 

Objects located behind this point have positive paral-

lax and vice versa [7]. The amount of parallax also 

helps our brain perceive the depth and distance infor-

mation [6]. Supplementary depth information is ex-

tracted from the monocular impressions e.g. curvilin-

ear perspective, known details, relative scale, occlu-

sion, aerial perspective, texture gradients, lighting, 

shadows and relative motion [7].  

The considered high definition 3D-TVs display video 

streams that were recorded side by side (SBS). For dis-

playing, each side is straightened to the full size and 

interlace with a shared frequency. Using polarized or 

shutter glasses the two displayed images are alternat-

ingly conveyed to the viewers eyes. Displaying them 

on a 16: 9 TV screen with 1920×1080 pixels, the in-

terlaced representation requires two figures with 

960×1080 pixels (8: 9) each. To create a SBS stereo 

image multiple methods exist. In the web application, 

an adapted parallel view method is applied [8]. A sec-

ond viewport is set up to render the second image 

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



based on the shared content. Each viewport contains a 

virtual camera perspective facing parallel to each 

other. The location of the rendered objects in each 

view frustum shift relative to the shared centerline of 

the virtual camera in the opposite direction. Due to the 

parallel camera views the keystone effect is avoided 

that is cause by trapezoid projections like in the case 

of two cameras with non identical projection planes 

focusing on a single point (toe-in method). Consider-

ing that 3D-TVs straighten the images their width is 

reduced to a half. For static objects no relative motion 

and scaling is needed. Objects in front of the projec-

tion plane will be experienced as they pop out of the 

screen and vice versa. The cameras separation is set 

equal to the separation between the two presented im-

ages. Since this separation and the distance between 

the two cameras and the projection plane majorly in-

fluences the impression of depth their relation is esti-

mated as ≤ 1/20. For a comfortable view, the nega-

tive parallax is supposed to be smaller than the inter-

pupillary distance. Otherwise eye strain and diplopia 

occurs. The angle of parallax  

Θ = 2 atan(𝐷𝑂𝑏𝑗/𝐷𝑣𝑖𝑒𝑤), (1) 

with 𝐷𝑂𝑏𝑗 as horizontal separation between the objects 

and 𝐷𝑣𝑖𝑒𝑤  as their distance to the screen. It is advised 

to be Θ ≤  ± 1.6° [7]. Therefore, the user is enabled to 

adjust the separation with keyboard keys  and . 

Further interaction like a zoom or a shift of the model 

are also provided by using the mouse. An additional 

layer with different parallaxes is added to supports the 

viewer to distinguish between 3D and 2D contents like 

a legend or subtitles. Fig. 6 shows the 3D visualization 

of the wrench from the model library within full screen 

mode at a LG 65UB950V including its color legend. 

 

Figure 6: Visualization on LG 65UB950V 3D-TV  

Extending the 3D experience to be more realistic and 

enhance is the idea of Virtual Reality (VR) environ-

ments [9]. To do so, classical input techniques are re-

placed by various technologies such as head tracking, 

gesture recognition and motion capturing. Here, the 

abilities of the visualization system are extended to re-

sponse to the user’s interaction by supporting VR head 

mounted displays (HMDs). This is of special interest, 

since HMDs enable a low-cost experience of VR 

within areas of limited space like an office for a prod-

uct developer or a simulation engineers. For visualiza-

tion the basic principle is similar to 3D-TVs. The SBS 

projection divide the screen. For a screen with 

1920 × 1080 pixels this results in two areas with 

960×1080 pixels each. A higher resolution enables 

more impressive and realistic VR experience. Within 

HMDs convex lenses are used to break the restriction 

of close object. The virtual image forms according to 

thin lens formula  

1/𝑑𝐹𝑜𝑐 = 1/𝑑𝐼𝑚 + 1/𝑑𝑂𝑏𝑗 , (2) 

with 𝑑𝐹𝑜𝑐  as focal length, 𝑑𝐼𝑚  as distance from the 

lens to screen and 𝑑𝑂𝑏𝑗  as distance from the object to 

the lens. For Googles Cardboard the focal length is de-

noted as 𝑑𝐹𝑜𝑐. ≈ 45 mm, the distance from the lenses 

to the screen as 𝑑𝐼𝑚 ≈ 38 mm and the resulting image 

distance as 𝑑𝑂𝑏𝑗 ≈ 250 mm [10]. This fits to the least 

distance of distinct vision (LLDV) of a young adult 

with normal vision. This also represents minimum 

comfortable distance between an object and the eyes. 

The related magnifying power  

𝑀 = 𝑑𝑂𝑏𝑗/𝑑𝐹𝑜𝑐  (3) 

of the lens is 𝑀 ≈ 5.5, so objects appear in a certain 

distance instead of right before the eyes. Using a 

smartphone as screen within a HMD, its sensors get 

available to handle at least 3 degree of freedom (dof). 

This is feasible for orientation within the visualization 

by using head tracking. Using input devices with 

6 dofs also translation and rotation can be handled. 

Combining head tracking with the rendered spherical 

visual scene an enhanced experience of VR is created. 

DeviceOrientationEvents are used for implementation 

within the web application. They define several DOM 

events that enable reactions on the motion and orien-

tation of a device [11]. The introduced coordinate sys-

tem is shown in fig. 7.  

 
Figure 7: Coordinate System of a mobile phone 

The x-axis is in the plane of the screen and points to 

the right. A rotation around x-axis is given as 𝛽 with 

−180° ≤ 𝛽 ≤ 180°. The y-axis is also in the plane of 

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



the screen and points to the top. A rotation around it is 

evaluated as 𝛾  with −90° ≤ 𝛾 ≤ 90° . The z-axis is 

perpendicular to the screen and completes the right-

angled coordination system. The related rotation angle 

is 𝛼 with 0 ≤ 𝛼 ≤ 360°. Since a mobile device is used 

in the HMD and it is vertically mounted, an adequate 

input matching is required. This enable the user to see 

the visualization from different perspectives. Fig. 8 

shows the visualization at a mobile phone with and 

without the stereoscopic mode for HMDs. 

  
Figure 8: Mobile and stereoscopic visualization 

Evaluation 

Using hardware within a VR system, the latency and 

the frame rate are two critical factors for generating a 

realistic impression. For a comfortable usage of a 

HMD, the latency is limited to 20 ms [12]. Therefore, 

the refresh interval of the canvases and the sample in-

terval of the gyroscope sensor is set to 17 ms. Depend-

ing on the complexity of the displayed scene and the 

performance of the smartphone, the frame rate can sig-

nificantly decrease. By our experience, a discomfort 

usage occurs below 30 Hz or in case of a noticeable 

delay between motion and visualization. This can also 

lead to motion sickness. To achieve a good VR expe-

riencing, a frame rate above 60 frames per second 

(FPS) and a low latency between motion and display 

updates is provided. Therefore, visualization updates 

are forced when the model is moved or its orientation 

changes. Results given in table 1 for 77 ⋅ 103 vertices 

prove this for the Feeder Clamp model at several ordi-

nary mobile phones, different operating systems and 

various internet browsers.  

Device Browser Screen (pixel) FPS 

Mate 9 Pro Chrome 2560×1440 60 

Mate 9 Pro Firefox 2560×1440 60 

iPhone 6 + Chrome 1920×1080 60 

iPhone 6 + Safari 1920×1080 60 

iPhone 6 Chrome 1334×750 60 

iPhone 6 Safari 1334×750 60 

Table 1: Web application performance at  

several mobile phones 

Fig. 9 shows the evaluation of the calculation time 

within 17 ms on a mobile phone during visualization 

updates. Here, the two viewports refresh synchro-

nously by invoking the draw function. Since the sec-

ond viewports differ only in the horizontal position, 

the cost for its drawing is small. As shown, the website 

including its rendering performed well and the remain-

ing idle time provide a buffer for additional tasks.  

 
Figure 6: Performance evaluation 

Conclusion 

Here, a standalone interface for web-based virtual re-

ality was presented and details were given for the un-

derlying standalone visualization system. The devel-

oped user-friendly web application was implemented 

based on responsive web design rules and by applying 

nowadays web techniques. Details for the data han-

dling and the rendering were given to visualize COM-

SOL Multiphysics® simulation results. The web appli-

cation runs on multiple platforms like mobile phones, 

tablets, desktop computers and 3D-TVs in combina-

tion with a common browser as shown in fig. 7. 

  
Figure 6: Application examples 

No additional plugins or other external libraries are 

needed. The provided stereo display mode is used to 

display a stereoscopic image on a 3D-TV or on a head 

mounted display. This is of special interest, since these 

techniques enable a low cost and much more powerful 

experience of the simulation results, even in areas of 

limited space like an office. The presented figures and 

the evaluations proves the functionality of the devel-

oped interface and the visualization system. Further 

improvement of the VR experience is expected by fol-

lowing the pre-released WebVR specification by the 

World Wide Web Consortium (W3C). Simplified calls 

of the viewports and perspective manipulation are an-

nounced as well as optimized display effects like dis-

tortion correction. Also support for further and more 

intuitive input devices outline a better VR experience.  

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



References 
 

[1]   M. Jüttner, S. Grabmaier and W. M. Rucker, Web 

Based 3D Visualization for COMSOL 

Multiphysics, Cambridge, UK: European 

COMSOL Conference, 2014.  

[2]   D. Crockford, "The application/json Media Type 

for JavaScript Object Notation (JSON)," Request 

for Comments: 4627, 2006.  

[3]  S. Tilkov and S. Vinoski , "Node.js: Using 

JavaScript to Build High-Performance Network 

Programs," IEEE Internet Computing , vol. 14, 

no. 6, pp. 80-83, 2010. 

[4]   E. Marcotte, Responsive Web Design, A Book 

Apart, 2011.  

[5]   D. Ginsburg, B. Purnomo and D. Shreiner, 

OpenGL ES 3.0 Programming Guide, Addison-

Wesley Professional, 2014.  

[6]   I. P. Howard and B. J. Rogers, Binocular vision 

and stereopsis, Oxford University Press, 1995.  

 

[7]   D. A. Southard, "Transformations for stereoscopic 

visual simulation," Computers & Graphics , vol. 

16, no. 4, pp. 401-410, 1993.  

[8]   R. R. Hainich and O. Bimber, "Displays: 

fundamentals & applications," CRC Press, 2016. 

[9]   G. Saggio and M. Ferrari, New Trends in VR 

Visualization of 3D Scenarios, Virtual Reality - 

Human Computer Interaction, InTech, 2012.  

[10]   Google Inc., 1600 Amphitheatre Parkway, 

Mountain View, CA 94043, USA, Google 

Cardboard, 2014.  

[11]   R. Tibbett, T. Volodine, S. Block and A. 

Popescu, "DeviceOrientation Event 

Specification," W3C Working Group , 2017.  

[12]   R. Yao , T. Heath , A. Davies , T. Forsyth , N. 

Mitchell and P. Hoberman , "Oculus VR Best 

Practices Guide," Oculus VR, LLC , 2014. 

 

 

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam




