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Abstract: 
The level set based topology optimisation technique 

is applied to optimise a 2D and 3D convectively 

cooled heatsink. The approach is used to determine 

the design providing minimal thermal compliance 

and minimal viscous dissipation. The optimisation 

has been performed utilising the COMSOL 

multiphysics for solution of physics and sensitivity 

analysis and the MATLAB Livelink functionality 

for level set advection and reinitialisation. This 

paper describes the details of implementation, the 

topology optimisation model and presents results 

obtained using this formulation.   

Keywords: Level set, Topology optimisation, Heat 

sink, Forced convection, Re-initialisation 

1.0 Introduction  

A heat sink is a passive cooling device which 

transfers the heat received from the heat source to 

adjacent fluid medium through forced or natural 

convection. Many electronic devices, such as CPU, 

GPU, power transistors and LEDs generate 

significant levels of heat energy which must be 

efficiently dissipated in order to ensure reliable 

operation. 

Topological optimisation (TO) is a mathematical 

approach that optimises material layout within a 

given design space, for a given set of constraints 

such that the resulting layout meets a prescribed set 

of performance objectives [1]. The technique has 

primarily been used for structural optimisation 

problems but it is been applied to various physical 

problems. The two most prevalent TO approaches 

are density based method and Level-set methods 

(LSM) [2], with the latter preferred due to the ability 

to sharply capture inter-material interfaces. 

COMSOL Multiphysics software has been 

successfully used to apply LSM TO for design 

optimisation in a variety of physical problems. In 

this study we use COMSOL Multiphysics solver 

combined with MATLAB Livelink for performing 

the LSM TO with re-initialisation of the level set 

functions at regular iteration intervals to enhance 

accuracy. 

In this study Two & Three dimensional heat sinks 

will be developed for two different solid to fluid 

thermal conductivity ratios for the objectives of 

minimum thermal compliance (TC) and viscous 

dissipation (VD). The rest of the paper details the 

LSM TO formulation in Section 2, Numerical 

Implementation in Section 3 and Computational 

details in Section 4. Results of the study and 

discussion are given in Section 5 and Conclusions 

are given in Section 6. 

2.0 Level set based TO formulation  

The seminal papers on LSM TO were written by 

Allaire [3] and Wang [4], where they applied this 

technique for the optimisation of structural 

members. Challis and Guest [5] applied this 

technique for the optimisation of Stokes flow 

problems. Subsequently this technique has been 

extended by many researchers to various fields. 

 In this technique, Signed Distance Function (SDF) 

is used as level set function (LSF). Positive SDF (𝜓) 
is considered to represent solid and negative SDF is 

considered to represent fluid (Figure 1). This is 

enforced by the ersatz projection approach [3], using 

Heaviside function.  

𝜓 = {

= 0 ∀𝑥 ∈ 𝜕Ω (boundary)

> 0 ∀𝑥 ∈ Ω+ (𝑆𝑜𝑙𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛)

< 0 ∀𝑥 ∈ Ω− (𝐹𝑙𝑢𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛)
                        (1) 

 

 

Figure 1 Design domain and level set function 

Brinkman’s porosity term () is used to differentiate 

solid and liquid and it is modelled as below.  

= (max - min)*H + min         (2) 

Where, H is Heaviside function, which take unit 

value when LSF is positive and takes zero value 
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when LSF is negative and it has smooth transition 

between the two levels in order to enable 

differentiability. Derivative of Heaviside function is 

 function whose expression is also given below. 
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Where max =1e4 and min =0.01 

 Evolution of the LSF represents evolution of shape 

and this evolution with respect to time is governed 

by Hamilton-Jacobi (HJ) equation, given in (5). This 

equation is marched in time to convect the LSF in 

the decreasing direction of objective value. This is 

done by taking the velocity of convection equal to 

shape sensitivity. 

HJ equation:  
𝜕𝜓

𝜕𝑡
= 𝑉𝑛|∇𝜓|                                      (5) 

 

 This equation is solved using an explicit first order 

upwind scheme. The time step for the marching 

should satisfy the CFL criterion for stability [3]. 

Every time the physical problem is solved, the HJ 

equation is marched in time several time steps in 

order to obtain new shape or new level set function. 

The MATLAB code (TOPLSM) written by Wang 

[6] demonstrates the various steps involved in level 

set based topology optimisation for simple structural 

mechanics problems.  

 The formulation of the approach requires the 

gradient of the LSF has to be unity. During LSM 

boundary convection this gradient may vary from 

unity and result in in-accuracy of boundary 

definition. In order to overcome this, the Eikonal 

equation (6) is solved to re-initialise the LSF [3]. 

The unsteady equation is time marched till steady 

state is obtained, the steady state ensures the 

gradient of level set equals 1. 

𝜕𝜓

𝜕𝑡
+𝑤. ∇𝜓 = 𝑆(𝜓𝑜)  

𝑤 = 𝑆(𝜓𝑜)
∇𝜓

|∇𝜓|
                                                               (6) 

Where S is smoothed sign function S()={
1
−1

 

𝑆()𝑖,𝑗 =
𝑖,𝑗

√𝑖,𝑗
2+ℎ𝑚𝑒𝑠ℎ2

                         (7) 

 

Gradients calculated through forward and backward 

difference formulas are used to solve the equation. 

The difference formula used for time marching is 

given below. 
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3.0 Numerical Implementation  

 The topology optimisation of heatsinks using Level 

set method with re-initialisation is implemented 

following the works of Liu [7], Kawamoto [8] and 

Deng [9]. The works of Liu and Kawamoto describe 

the coupled LSM TO formulation within COMSOL 

multiphysics, whereas Deng has used COMSOL 

Multiphysics for solving the physics and MATLAB 

Livelink for solving the HJ equation and for re-

initialisation. The paper follows the approach of 

Deng [9] but applied to the challenge of heat sink 

design. Some of the notable works on heat sink 

design using topology optimisation are by Yoon 

[10], Alexanderson [11] using Density method and 

works of Yaji [12] and Coffin [13] using Level set 

method. Yaji designed liquid channel cooled heat 

sinks and Coffin designed convectively cooled heat 

sinks using level set with Extended Finite Element 

Method geometry mapping. 

 The various steps involved in the process are given 

in Figure-2, in which steps enclosed within the 

dashed line box are carried out in COMSOL 

Multiphysics and rest of the steps are carried out in 

MATLAB Livelink.  

 First, the design domain is initialised with some 

initial guess of LSF in MATLAB and it is exported 

to COMSOL Multiphysics. For the heat sink design, 

the points within the design domain are 

differentiated into solid or fluid by interpolating the 

properties viz, thermal conductivity, Cp, density and 

material impermeability. This in turn depends on the 
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sign of level set function and Heaviside function as 

given in Table-1.  

 

Figure 2 Level set topology optimisation procedure 

Name Expression 

Kgam (Ks- Kf)*H + Kf 

Cpgam (Cps- Cpf)*H + Cpf 

gam (s- f)*H + f 

Table 1 Interpolation of thermal properties 

 

The heat sink optimisation problem for two different 

objectives are stated below. 

Objective TC: 𝑚𝑖𝑛 ∫ 𝑘𝑔𝑎𝑚 ∗ (∇𝑇)2𝑑Ω
Ω

 

Objective VD: min 𝜇 ∫ (
𝜕𝑢𝑖

𝜕𝑥𝑗Ω
)2 𝑑Ω              (9) 

Subjected to,  

𝐶𝑝(𝑢.𝑇) = . (𝑘𝑇) + 𝑄                   (10) 

(. 𝑢) = 0                                                (11) 

(𝑢.𝑢) = −𝑝 + . {µ{𝑢 + (𝑢)𝑇}} − 𝑢

                                                         (12) 

H()u=0        (13) 

 

Volume constraint = 0.40*Design volume         (14) 

 

In order to import the LS in COMSOL from 

MATLAB, “Interpolation” Function is used. Since 

the mesh remains same and only the level set 

function is evolving, no accuracy will be lost due to 

interpolation. By solving the physical problem in 

COMSOL, the shape sensitivity is calculated and 

then it is retrieved in MATLAB Livelink using 

command ‘mpheval’, the syntax is given below. 

mpheval(model, 

'shapesens','dataset','dset2','selection',3) 

 

where ‘shapesens’ is the variable name, ‘dset2’ is 

dataset number and ‘3’ is the design domain number. 

No-slip is imposed by initialising velocity equal to 

zero in solid regions i.e., where H equal to 1. 

  For TC objective, the velocity term in the HJ 

equation (5) is equal to,  

𝑉𝑛 = [𝐾𝑔𝑎𝑚 ∗ ((
𝜕𝑇

𝜕𝑥
)2 + (

𝜕𝑇

𝜕𝑦
)2 + (

𝜕𝑇

𝜕𝑧
)2) +  𝜆 +

(𝑉𝑜𝑙𝑢𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)]                     (15) 

Where the first term on the right hand side denotes 

the shape sensitivity for the thermal compliance 

objective,  is the Lagrangian multiplier and is the 

area penalty factor. 

For VD objective, shape sensitivity is, 

𝑉𝑛 = 0.5 ∗ 𝜇 ∗ ((
𝜕𝑢𝑖

𝜕𝑥𝑗
) + (

𝜕𝑢𝑗

𝜕𝑥𝑖
))
2

+  𝜆 +

(𝑉𝑜𝑙𝑢𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)       (16) 

The Lagrangian multiplier and Area penalty factor 

are updated as follows. 

𝜆𝑘 = 𝜆𝑘−1 − Λ𝑘−1 (𝑉𝑜𝑢𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)       (17) 

Λ𝑘 =
1

𝛽
Λ𝑘−1                       (18) 

The value of  is 0.9, and the same value is used for 

all simulations irrespective of the objective of the 

study but value of Lagrangian multiplier , and the 

area penalty factor , are chosen differently for 

different objectives. The reason for choosing 

different value is the difference in magnitude of the 

objective values. Suitable value of these factors are 

chosen by trial and error method. 

The level sets are re-initialised at regular intervals 

(every 4th iteration or 5th iteration) to maintain their 

slope. It is noted that due to re-initialisation, the 

mean line of the boundary is slightly moved or there 

may be a phase lag. Level set distribution before and 

after re-initialisation at one instant is shown in 

Figure-3. Topology gradient term is not 

implemented in the algorithm so no new holes are 

nucleated in the design domain.  

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



The evolved level sets are again feedback to the 

COMSOL Multiphysics and this procedure is 

repeated till convergence. 

 

Figure 3 Level set function before and after re-

initialisation 

4.0 Computational details 

  Design domain is rectangular in shape, with heat 

source at the bottom of the domain and liquid 

convection injected from the top of computational 

domain as shown in Figure-4. The two sides of the 

computation domain act as outlet.  

 

Figure 4 Computational domain details 

The design domain is discretised with 150x50 

rectangular elements. The initial level set used for 

the computation is series of circles. The level set 

function is evolved on a grid mesh with ghost 

elements, these elements surround the 4 sides of 

design domain. ‘Heat transfer in fluids’ and 

‘Laminar flow’ modules of COMSOL are used for 

computation. A liquid flow of velocity 0.002m/s and 

temperature 293K is applied at the Inlet. The inlet 

velocity corresponds to a Reynolds number of 600 

and a heat flux of 700W/m2 is specified as heat 

source in the bottom wall and zero pressure 

boundary condition is applied at the outlet. TO is 

carried out for two different material sets i.e., fluid 

to solid conductivity ratios. The material properties 

are given in Table-2. 

Parameter Value 

Kf /Ks 0.001 & 0.1 

f /s 1000/8920 

Cpf /Cps 4184/385 

  Table 2 Material properties 

 Computational domain used for 3D study is shown 

in Figure-5. The computational domain considered 

is 1 quadrant of the total domain, making use of 

symmetry boundary condition on the two sides. The 

design domain is a cube of side 0.1m length and it is 

discretised by 43x43x43 mesh elements. Heat flux 

of 1000W/m2 is applied at the bottom corner of area 

1.353e-4 m2 of the design domain base and a fluid 

flow of velocity 4e-5m/s is applied at the top surface 

of the computational domain. The volume fraction 

of solid material is constrained at 25%.  

 

Figure 5 Three dimensional computational domain 

Linear elements or discretisation is used for both 

velocity and pressure along with stream wise 

diffusion stabilization for finite element solution. In 

two dimensional case, governing equations are 

solved in coupled way and for three dimensional 

case equations are solved in segregated way. 

Simulation meeting the area constraint and the 

objective not varying significantly is considered as 

converged.   

5.0 Results and Discussion  

  Considering only TC as objective, TO is carried out 

for 2 fluid to solid conductivity ratios kf/ks=0.001 

and 0.1. Since the flow Reynolds numbers are low 

(Re600), it is expected that at least for later case, the 

convective heat transfer will play a comparable role 

to conduction. Results obtained are given in Section 
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5.1 and 5.2 and later section describe the result for 

VD minimisation case and combination of TC and 

VD objectives. 

5.1 Heat sink of higher solid conductivity 

kf/ks=0.001 case: 

 The optimized shape for higher solid thermal 

conductivity case, resemble like a tree shape and it 

is shown in Figure-6. Temperature is uniformly 

distributed throughout the design domain expect 

near the peripheries. Convergence of Lagrange 

Multiplier, Area difference and Thermal compliance 

are shown in Figure-7.  

 

 

Figure 6 Level set and Temperature (K) distribution 

 

Figure 7 Convergence History 

5.2 Heat sink of lower solid conductivity 

kf/ks=0.1 case: 

 The optimized shape and the temperature 

distribution within the design domain are shown in 

Figure-8. Unlike the high solid conductivity case, 

this doesn’t have many branches but the primary 

branch connects the heat flux with the corners of the 

design domain. The objective and Maximum 

temperature observed in the design domain are given 

in Table-3. 

 

 

  Figure 8 Optimized shape for thermal compliance 

(Kf/ks=0.1) and Temperature (K) distribution 

Kf/Ks 

Thermal 

Compliance(WK/m) 

Maximum 

Temperature 

(K) 

0.001 202.507 523.10 

0.1 3154.40 631.60 

Table 3 Results of minimum thermal compliance 

objective optimisations 

 

5.3 Combined TC and VD 

  For this case, the objective for the topology 

optimisation problem is defined as, 

Objective = F1* TC + F2* VD               (19) 

Where F1 and F2 are factors and when F1 is equal 

to zero, the optimisation becomes pure VD 

minimisation problem and when F2 is zero it 

becomes TC minimisation problem.  
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Before optimising the heat sink for combined 

thermal compliance and viscous dissipation, an 

optimisation is carried out for pure VD minimisation 

case. The optimised shape and the velocity field in 

the design domain are shown in Figure -9.  

 

 

Figure 9 Optimised shape for minimum viscous 

dissipation and Velocity (m/s) contour 

The VD magnitude is many order lower than TC, as 

the fluid viscosity (1.02e-3Pa.s) and Re are low. 

Hence for combined objectives run, F1 is taken as 

1e-9 and F2 as 1, so that both the objectives will 

influence the optimization. Optimized shape 

obtained is shown in Figure-10. In order to allow the 

smooth flow passage, branched structure has 

changed into a rectangular block on top of heat 

source and two islet of solid region acting like a 

guide vane for the incoming flow. Optimized shape 

along with velocity and Temperature contour are 

given Figure-10.  

 

(F1,F2) 
Thermal Compliance 

(WK/m) 

Viscous Dissipation 

(N/s) 

(0, 1) - 7.9642e-8 

(1e-9,1) 2357.12 8.8307e-8 

Table 4 Combined TC and VD optimisation results 

 

 

 

 

Figure 10 Results of combined TC and VD optimisation, 

shape, velocity (m/s) and Temperature (K) contour 

5.4 Three dimensional Heat sink 

A three dimensional heat sink is optimised for TC 

objective for conductivity ratio of kf/ks=0.001 

subjected to laminar forced convection of Re=8. 

Heat sink shape, velocity and temperature 

distribution are given in Figure-11, 12.  
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Figure 11 Top view of full (symmetrised) optimised heat 

sink  

 

Figure 12 Velocity (m/s) and Temperature (K) 

distribution in the design domain 

5.5 Discussion 

The heat sink shapes obtained for higher solid 

conductivity case agrees with the tree like shape 

reported in literature. Because of the reduced 

thermal conductivity, branches are missing in the 

low solid conductivity case, which is 

understandable. Similarly for the combined TC and 

VD minimisation case, the optimiser tried to avoid 

sharp changes in temperature and velocity 

throughout the domain.  

The 3D heat sink has a primary branch extending to 

the opposite diagonal and other small branches 

extend in different directions and the branch tip ends 

with bulb like mass. The structure also has 

isolated/disconnected regions. The symmetry 

boundary condition used during optimisation needs 

validation as it has not worked well for 2D cases.  

6.0   Conclusions 

 Level set based topology optimisation is applied to 

the design of 2D and 3D convectively cooled heat 

sinks for different material sets. In this formulation, 

evolution and re-initialization of level set is carried 

out in MATLAB Livelink while physics is solved in 

COMSOL Multiphysics. This formulation ensure 

crisp boundary capture and no-slip condition also 

applied on the solid boundaries. Heat sink shape 

obtained for 2D and 3D higher solid conductivity 

case agree with tree like/dendritic shape.  

 The symmetry boundary condition used during 3D 

optimisation needs validation, this will be taken as 

future work. Also, extending this technique to 

industrial Reynolds number and for various other 

application is also planned in future. 
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